学年

質問の種類

数学 高校生

青の四角で囲んだ部分はどこから来たのですか?? 1つ上の式に√2/2をかけるところまでは理解出来たのですが、青四角の部分は何が起こったのかどなたかわかる方教えてください!!🙇‍♀️

DO 基本 例題 137 2次同次式の最大・最小 000 Yami sincos0 +2con" (002)の最大値と最小値を求めよ。 CHART I sin と cos & SOLUTION の2次式角を20 に直して合成 1-cos 20 2 sin20= L半角の公式 基本135 MOITUJO ZA TRAHD sin20 sinOcos0= 2 cos20= 1+cos 20 2 L2倍角の公式 半角の公式 これらの公式を用いると, sino, costの2次の同次式 (どの項も次数が同じである式) は 20の三角関数で表される。(は) 更に、三角関数の合成を使って, = psin (20+α) +α の形に変形し, sin (20+α) のとり うる値の範囲を求める。 08000nia S-0 200+(nie S-1aiz L の質は一般から f(0)=sin'0+sinOcos0+2cos2d 1-cos 20 sin 20 == 2 ・+2・・ 1+ cos 20 8=24 mie sind, cose の2次の同 次式。 0 _1 2 (は2とな 3 -1/2 (sin20+cos20) + 22 2 sin (20+4)+3 (1,1) 1H OS nie-08 π 02054 sin 20, cos 20で表す。 sin 20 と cos 20 の和 合成 4章 17 加法定理 π 1 x 0≤0≤ であるから 2 30 YA S ≤20+ 4 4 4 π 5 の糖 範囲に共 π かめられる。 よって1ssin(20+4) 1 14 -1 1x AX 3+√2 ゆえに 1≤f(0)≤ この 2 ? a+r したがって,f(8) は 各辺にを掛けて √2 I> sin(20+4) √2 2 を開く! くには? 20+ π TC πC 4 2 すなわち = で最大値 120 8 π = 4 5 20+ 2 すなわち =1で最小値1をとる。 4 この各辺に22を加える。 ・利用して、右辺をsio 3+√2 2

解決済み 回答数: 1
数学 高校生

2枚目の、赤文字が自分が思ったやつなんですけど、 なんでこれじゃダメなんですか????

246 基本 例題 153点の回転 π (2)点Qの座標を求めよ。 点P'を原点O を中心として ☆ 指針点P (x, y) を,原点を中心としてだけ回転させた点をA Q(x, y) とする。 00000 (1)点Aが原点0に移るような平行移動により、点Pが点に移るとする。 点P(3, 1), 点A(1, 4) を中心としてだけ回転させた点をQとする。 2 基本 1 だけ回転させた点Q' の座標を求めよ。 <P.241 基本 y x=rcoso yersino >P(x, y) OP=xとし、径 OP と x軸の正の向きとのなす角をαと すると X=rcosa, yo=rsina OQ=rで,動径OQx軸の正の向きとのなす角を考える と 加法定理により x=rcos(α+0)=rcosacoso-rsinasino =xocoso-yosin O y=rsin(α+0)=rsinacos0+rcosasino =yocos0+xosin Sing 解 2 この問題では,回転の中心が原点ではないから,上のことを直接使うわけにはいかな S Q (rcos(a+6) Y a 0 sin(a+6/ P (rcosa, 23 解答 が原点Oに移るような平行移動により,点Pは P'(2, 3)に移る。次に,点 Q' の座標を(x', y') とする。 また,OP'=rとし, 動径 OP' とx軸の正の向きとのなす 角を とすると 2=rcosa, -3=rsina 3点P,A, Qを,回転の中心である点が原点に移るように平行移動して考える。 x軸方向に1, 方向に4だけ平行 動する。 π 3 2.-(-3).√3 2+3√3 回転の中なってx=rcos(a+ -rcosacos rsinasin を計算する必 π π 3 or い。 2 うまくでない y=rsin(a+ π ↓ +号) =rsinacos+rcosasin / π YA A 34 =- 回転の中心原点に! 12.2√3-3 2 したがって点Q'の座標は (2+3/3 2/3 - 3 ) 1--- 012/3 練習 ③ 153 2 (2)Qは,原点が点Aに移るような平行移動によって, 点Qに移るから,点Qの座標は 3 -3- P (2+3√3 ・+1, 2√3-3 2 2 +4 から 4+3/3 2√3+5 2 2 (1) P(-2,3)を,原点を中心として 5 (2)点P(3,-1)を,点A(-1, 2)を中心として 標を求めよ。 た点 Qの座標を求めよ。 π だけ回転させた点00 Qの風 P.254 EX93(2

解決済み 回答数: 1
数学 高校生

加法定理の問題です。 画像の線を引いてあるところがわからないので、解説お願いしたいです。 よろしくお願いします。

第2問 (必答問題) (配点 15 太郎さんは、ボールをゴールに蹴り込むゲー ムに参加した。 そのゲームは、 右の図1のように地点 0か ら地点Dに向かって転がしたボールを線分 OD上の1点からゴールに向かって蹴り 地点 Aから地点Bまでの範囲にボールが飛び込んだ とき,ゴールしたことにするというものであっ B 3m ル ボールが転がされ、 ボールを蹴るライン A 3mi 2m 0 9m 図1 た。 ただし, ボールは点とみなし, 大きさは考えないものとする。 そこで太郎さんは, どの位置から蹴るとゴールしやすいかを考えることにした。 地点を通り,直線ABに垂直な直線上に, AB // CD となるように点Cをとる。 さらに,太郎さんは, 0を原点とし、 座標軸を0からCの方向をx軸の正の方向、 OからBの方向をy軸の正の方向となるようにとり, 点Pの位置でボールを蹴るこ とを図2のように座標平面上に表した。 B. (5.0) B4 (2.0) A 0 図2 このとき 2点A, B の座標はA(0, 2), B(0, 5), ボールを蹴るラインを表す直 太郎さんは、最もゴールしやすいのは、 APBの大きさが最大になる地点Pであ ると考えた。 「レーの ∠APBの大きさが最大となる点Pの座標を求めよう。 ア イ (0<x9) とし、 図2のように, 2直線AP, BP とx軸の正の 向きとのなす角をそれぞれα, βとする。 この である。 クリー x- ウ x- エオ tana= tanβ= イ イ 1x <APB=a-B と表され、∠APBがらになることはないから,tan (e-β)を考え ることができる。 カキx tan (α-β)= となり, ケー コサx+ シス 常にクケコサx+ シス >0であるから, 0x9のとき, tan (α-β) > 0 である。 0 カキ さらに, tan (β)= と変形でき, 0<x≦9の範囲で シス タケ x+ コサ x シス タケ x+ は最小値 センをとる x ア 線 OD の方程式はy= x と表すことができる。 イ (数学Ⅱ, 数学 B 数学C第2問は次ページに続く。) (第3回-5) 以上のことから、点Pのx座標が タ のとき, ∠APBの大きさは最大である ことがわかる。 (第3回-6)

未解決 回答数: 1