学年

質問の種類

公務員試験 大学生・専門学校生・社会人

わかる【解放のテクニック】部分の②の甲一人何時間働いたかを確かめる計算式で1-5分の3となっているのですが、なぜ5分の3を引くのでしょうか?具体的に教えて頂けると助かります。

p.114、22日目:仕事算 基本公式に数値を入れて計算する 1日 (時間) 当たりの仕事量 = 所要日数(時間) ●仕事量=1日(時間) 当たりの 仕事量×働いた日数(時間) ●全体の仕事日数 1 = わかる! 解法のテクニック 11人の1時間当たりの仕事量を計算する 基本公式を利用して、 1時間当たりの仕事量== 所要日数(時間) 仕事全体の量を1とすると、1人の1時間当たりの仕事量は 甲 12/21丙115 20 ② 3人での1時間当たりの仕事量を計算する 3人一緒に働くと1時間当たりの仕事量は 210+12+15=1/13 ③全体の仕事時間を計算する 分母を最小公倍数に ここでは分母を60に揃える 基本公式を利用して、全体の仕事時間=1+各人1時間の仕事量の和解答 よって、かかる時間は1÷- = 5時間 5 各人の1日当たりの仕事量の和 ※全体の量から考える場合、 分子が1となる。 残りの量から考 える場合は、1を残りの仕事量に置き換えて計算する。 (2) 3人で3時間働いた後、 残りを甲1人で行った。 甲1人では何時間働きました か。 A 3時間 B 4時間 C 5時間 D 6時間 E 7時間 F 8時間 わかる! 解法のテクニック 例題 1 13人で3時間働いたときの仕事量を計算 制限時間: 150 秒 3人で3時間働いたときの仕事量は×3時間= ある仕事をするのに甲1人では20時間、 乙1人では12時間、 丙1人では15時間か かる。 (1)3人同時に働いたら、 仕事は何時間で終わりますか。 A 3時間 B 4時間 C 5時間 D 6時間 E 7時間 F 8時間 甲1人で行ったのは1 -号=号 ② 甲1人で行った時間を計算 仕事量 基本公式を応用して、 残りの仕事時間=残りの仕事量 甲1時間の仕事量 だから、10+20=8時間 解答 2番目の公式の応用

未解決 回答数: 1
数学 高校生

まるで囲った2枚目の式が分かりません💦

(2)ある地域のタクシー会社のタクシー料金は、最初の1kmまでが500円で,そ の後は走行距離に応じて100円ずつ加算される。また,目的地に到着したときに 支払う料金を運賃という。 H ~90円 近年、キャッシュレス決済 (現金を使用せずにお金を払う方法) への対応やド ライブレコーダーの設置, アルコール検知器を用いた検査の義務化などによりタ クシー会社の負担が増したため、 来年から次のように運賃を改定することを検討 している。 【キャッシュレス決済の場合】 目的地に到着後の運賃を3%増額し、100円未満の金額を切り捨てた金額を 改定後の運賃とする。 【現金払いの場合】 目的地に到着後の運賃を3%増額し、100円未満の金額が50円以上のときは その金額を100円に切り上げ, 50円未満のときは100円未満の金額を切り 捨てた金額を改定後の運賃とする。 改定前に6000円だった運賃について、 改定後の運賃は 103 キャッシュレス決済の場合はイウ×100円 6000x leg 現金払いの場合はエオ×100 円 ・60x103 6180 となる。 =6100 運賃の改定後に200円の値上げとなるような改定前の運賃の範囲は (+200)円 xx100 キャッシュレス決済の場合はカキ×100円以上 クケ ×100円以下 103 (x+200)×100 現金払いの場合は コサ×100円以上 シス×100円以下 103x+206 100 である。 運賃の改定後にキャッシュレス決済と現金払いの差が最大となるような改定前 の運賃のうち、最小の運賃はセソ ×100円である。 キャッシュしす

回答募集中 回答数: 0
数学 高校生

集合と命題です (2)のAかつBが9-2aとなる理由が分かりません ご回答よろしくお願いします

Think 例題 90 集合の表し方(2) 1集合 181 **** ① 20以下の自然数の集合を全体集合ひとして,次のUの部分集合 A, B,C,D の包含関係をいえ=ア A={nnは3の倍数}, B={nnは6の倍数}, 2 C={n|nは3の倍数または2の倍数 D={n|nは3の倍数かつ2の倍数 } (S) 80A D ②2 全体集合をU={n|nは自然数, 1≦n≦6}, Uの部分集合を A={a, a-3}, B={2, a+2, 9−2a} とする. A∩BØ, AD2 のとき,αの値を定め、 A を求めよ. 考え方 (1) xEP となるxが必ずxEQ のとき,PCQ となり, 解答 PCQ かつ QCP のとき,P=Qとなる. まずは,それぞれの集合を要素を書き並べて表す. (2) 与えられた条件に注目する。 A∩BØ とは, AとBの中に同じ要素があるということ さらに,AD2 より,その要素は2ではないことがわかる。 (1) A={3,6,9,12,15,18}, B={6, 12, 18} より, BCA E={n|nは2の倍数} とすると, ●x A -B、 ·Q· 第3章 (ax> AB AUE を見つ E= {2,4,6,8, 10, 12, 14, 16, 18, 20} C=AUEDA より、 D=ANE={6,12,18}=B よって, B=DCACC (2) U= {1,2,3,4,5,6} である. A={a, a-3}, B={2, a+2,9−2a} で, a-3<a<a+2,A2 より, (i) 9−2a=a のとき A∩B={9-2a} なぜ? a=3 となり,このとき, (S>21- a-3=0 6の要素のうち、Aの 要素となり得るのは、 92aのみ a-3<a<a+2 より, a+2=α, a-3 全体集合の要素は1 つまり, A={0, 3} となるが,U0 より,不適. から6までの自然数で (ii) 9−2a=a-3のとき α=4 となり, A={4, 1}, B={2,6,1} はともにUの部分集合で, A∩B={1} QUINA よって、 a=4,A={2,3,5,6} (0) あり,AとBの要素が ひの中に入っているか 注意する. AnB≠Ø の確認 (

未解決 回答数: 1