学年

質問の種類

数学 高校生

数IIの不等式の証明の問題です。 (2)なのですが、黄色マーカーで囲ったところが分からないので、教えてください。 また、このような証明問題の進め方や書き方、コツや型があれば教えてほしいです。 よろしくお願いします。

例題 68 不等式の証明 [1][ 次の不等式を証明せよ。 (1)a≧bx≧yのとき2ax+by)≧(a+b)(x+y) b+d 思考プロセス b d (2) 正の数 a,b,c,d が を満たすとき a a+c C 目標の言い換え 不等式 A≧B を証明 A-B≧0 を示す A-B = ... = ( )( A-B=...= (2) 式を分ける () ( 条件式から各 の正負を考える。 価 タリ A<B<Cを証明するために,「AKBかつB<C」 を証明するmoito/ Action» 条件付きの不等式の証明は、(左辺)(右辺)の各因数の符号を調べよ (左辺)(右辺)を因数分 解する。 解(1)(左辺)(右辺) = 2(ax +by)-(a+b)(x+y) =ax+by-ay-bx =a(x-y)-b(x-y) =(a-b)(x-y) d. ここで, a≧b より a-b≧0,x≧y より x-y≧0 条件より各因数の符号を であるから (右辺)=(a-b)(x-y)≧0-3 2 (ax + by) ≧ (a+b)(x+y)(1+6. a(b+d)-b(a+c) (a+c)a d(a+c)-c(b+d) 調べる。 足である。 等号が成り立つのは ad-bcada-b=0 または x-y=0 すなわち, a = 6 または x=yのときである。 A<B<C を証明するた めに A<B かつ B<C を証明する。 (左辺) したがって b+d b (2) a+c a (a+c)a d b+d ad-bc = C a+c c(a+c) c(a+c) ここで,a>0,c>0であり a+c > 0 bu b また, // d の両辺に正の数ac を掛けるとbe <ad a C はない。) よって より あ ad-bc ゆえに > 0, (a+c)a ad-bc c(a+c) >0であるから b+d b d b+d - > 0, > 0 a+c a C a+c b b+d d したがって a a+c > C ad-bc>0 (A<C を証明する必要 り立つ 2 となる 生すること り

未解決 回答数: 1
数学 中学生

それぞれの問題の解説がほしいです教えてくださった方フォローいいねベストアンサーします

2 Sさんのクラスでは,先生が示した問題をみんなで考えた。 次の各問に答えよ。 [先生が示した問題] a b を正の数とする。 右の図1で, △ABCは,∠BAC=90°, AB=acm, AC=bcmの直角三角形である。 右の図2に示した四角形AEDCは, 図1において,辺BCをBの方向に延ばした 直線上にありBC=BDとなる点をDとし, 図1 図2 A B A B △ABCを頂点Bが点Dに一致するように平行移動させたとき, 頂点Aが移動した点をEとし,頂点Aと点E,点Dと点Eを それぞれ結んでできた台形である。 四角形AEDCの面積は, △ABCの面積の何倍か求めなさい。 〔問1] 次の |の中の「う」に当てはまる数字を答えよ。 [先生が示した問題]で,四角形AEDCの面積は, △ABCの面積の う 倍である。 Sさんのグループは, [先生が示した問題] をもとにして,次の問題を作った。 [Sさんのグループが作った問題] a, b, xを正の数とする。 E D 右の図3に示した四角形AGHCは,図1において, 辺ABをBの方向に延ばした直線上にある点をFとし, 図3 C △ABCを頂点Aが点Fに一致するように平行移動させたとき, 頂点Bが移動した点をG, 頂点Cが移動した点をHとし, 頂点Cと点H点Gと点Hをそれぞれ結んでできた台形である。 右の図4に示した四角形ABJKは,図1において 辺ACをCの方向に延ばした直線上にある点をIとし, △ABCを頂点Aが点Iに一致するように平行移動させたとき, 頂点Bが移動した点をJ, 頂点Cが移動した点をKとし, 頂点Bと点J,点Jと点Kをそれぞれ結んでできた台形である。 図3において, 線分AFの長さが辺ABの長さのx倍となる ときの四角形AGHCの面積と, 図4において,線分AIの 長さが辺ACの長さのx倍となるときの四角形ABJKの 面積が等しくなることを確かめてみよう。 A B F G 図 4 K I J C A B 〔問2〕 [Sさんのグループが作った問題] で, 四角形AGHCの面積と 四角形ABJKの面積を, それぞれα, b, x を用いた式で表し, 四角形AGHCの面積と四角形ABJKの面積が等しくなることを証明せよ。 -2-

回答募集中 回答数: 0
物理 高校生

緑で囲ったところはどうして1.0x10の-5乗ではなく、2.0x10の-5乗なのですか?

134 134 熱膨張 0℃で正しい長さを示すしんちゅう製の定規(線膨張率2.0×10~/K) で鉄の棒 (線膨張率1.0×105/K) の長さを30℃ではかったら、目盛りは3400mm を示 した。この棒の30℃での正しい長さは何mmか。 また, 0℃での正しい長さは何mmか。 それぞれ小数点以下を四捨五入して答えよ。なお,1に比べて正の数αが十分小さいと ≒1-α と近似してよい。 き, 1 1+a 解答 30℃における定規の1目盛り当たり 0℃のしんちゅう (正しい値 の長さは, 0℃における1目盛り当た りの長さの {1+(2.0×10-5) ×30} 倍に なるので, 棒の30℃での正しい長さ Z[mm] は l=3400×{1+(2.0×10-5) ×30} =3402.04≒3402mm 0℃での棒の長さをlo [mm] とすると l x {1+(1.0×10-)×30}=L よって ここがポイント 熱膨張の式「Z=Z (1+αt)」より, t〔°C〕 でのしんちゅう製定規の目盛り当たりの長さは、0℃ で の1目盛り当たりの長さに比べて (1 +αt) 倍になる, すなわち, 目盛りの(1+αt) 倍が正しい長さにな る。 3402.04 lo= 1+ (1.0×10-5) ×30 = 3402.04 1+3.0×10-4 近似式を用いて =3402.04(1-3.0×10-) ≒3402.04-1.02≒3401mm 熱膨張 30℃のしんちゅう 30℃の鉄の棒 3400 1407 3400 LODEE OUL ➡128 第6章■熱とエネルギー 6 3400mm より 長い 定が伸びた(脳 状態で計った 1+a g001- a≪ 1 のとき -=1-a 13 ら真 が 的 (1) 3 21 cra

未解決 回答数: 1
数学 高校生

極限の問題で初項0の場合を考えていないのですが、なぜ考えなくて良いのか教えて頂きたいです。

練習 次の数列が収束するように,実数xの値の範囲を定めよ。 また, そのときの数列の極限値を求め よ。 ②94 (1) (1) 収束するための条件は -1</1/23x1 x≦1 3 これを解いて 2 2 -x=1 となるのは,x= また,Aで (2) {(x2-4x)"} 3 2 <x≤. よって x2-4x≦1から x2-4x-1≦0 数列の極限値は (2) 収束するための条件は -1<x²-4x≦1 -1<x²-4x から x ²-4x+1>0 x2-4x+1=0の解は x=2±√3 x<2-√3, 2+√3 <x よって 3 3 012/21<x<12/2のとき0.x=12/2のとき A 掛けて -(x2-x+2)<x2+2x-5から ゆえに (2x+3)(x-1)>0 13 x- ...... HINT 数列{rn} の収束 条件は -1<r≦1 また,極限値は 8) mil=>-1<r<15 0₂ のときであるからなら1② x2-4x-1=0の解は x=2±√5 よって 2-√5 ≦x≦2+√5 2 ゆえに,収束するときの実数xの値の範囲は, ① かつ② から 02-√5 ≦x<2-√3, 2+√3<x≦2+√5 (3) {(x²-x+2 また、Aでx2-4x=1 となるのは、x=2±√5のときであるか ら、 数列の極限値は 映画 2-√5<x<2-√3, 2+√3 <x<2+√5のとき0; x=2±√5のとき1 (3) 収束するための条件は-1<x+2 3, 1<x 2' x2+2x-5\" x-x+2=(x-1/12 ) 2+1/17/>0であるから、各辺にポーx+2 を -(x²-x+2)<x²+2x-55x²-x+2+1 mil ( x2+2x-5 ≤1..... (A) x2+2x-5≦x2-x+2から 3x≦7 よってx≦- 7 AT D ←-1<x<1のときと r=1のときで数列{r"} の極限値が異なることに 注意。 (2) TER ae 2-√5 2-√3 x=0の場合 考えなくて♪ 2+√3 2+√5 2x2+x-30 ことになるから,不等号 の向きは変わらない。 MAA ←各辺に正の数を掛ける 4i 練 MJ

回答募集中 回答数: 0