学年

質問の種類

理科 中学生

(3)(4)の解き方を教えていただきたいです。

【問3】 各問いに答えなさい。 ス(方位磁針)がないと方角がわからなくなってしまうと不安に思い、お父さんに聞いてみた。 次の会話はそ あすかさんは、秋分の日にお父さんと登山に行くために天気図を見ている。 準備をしていたところ、コンパ このときのものである。 あすか:お父さん、図1の天気図を見ると、私たちが登る山の●印の地 図 1 あ 明日の天気は、 みたいね。 登山にはコンパス (方位磁針)を持って行くのだけれど、コンパスがなくても方角 を知る方法はあるのかな。 低 父 :お父さんの時計は登山用のデジタル時計だから、コンパスがな くても方角がわかる機能がついているけど、あすかの持って行 くアナログ時計でも、 およその方角がわかる方法があるよ。 そ の方法では、南の方角を知ることができるんだよ。 あすか : 本当に南の方角がわかるの? どうすればよいのかしら。 低 父 図2のように、まずアナログ時計の短針を太陽の方向に合わせ るんだ。 その短針の方角と時計の文字盤の12時の方向の真ん中 がおよその南の方角になるよ。 あすか 難しくて、よくわからないな。 登山の前日の18時の天気図 図2 南 父 :ちょうど12時の正午の場合で考えてごらん。 図3のように、時 計の短針は12時を指していて、長針も12時を指しているから、 短針と長針の真ん中も12時の方向になる。 南の方角も12時の方 向に来るから、太陽が南中していることもわかる。 太陽 図3 あすか:なるほど。正午の2時間後の14時 (午後2時)では、短針は太 陽の方向を指しているから、太陽は正午よりもい時計の文 字盤上を時計回りに進んだ方向にある。 そうすると、南の方角 は時計の文字盤上のう時の方角になるということだね。どう してこうなるのかしら。 父:太陽が1時間に移動する日周運動が、 え だ 20 からだね。 9 あすか : わかったわ、 ありがとう。 実際に山で試してコンパスの方角とく らべてみるね。 85 10 11 12 9 2 8 3 5. 太陽 南

回答募集中 回答数: 0
理科 中学生

これの(5)の問題教えて欲しいです

2 D-NAVI 12 還元/化学変化と質量 黒色の酸化銅の粉末 2.0g と炭素の粉末 0.06gを よく混ぜて試験管Aに入れ、 図1のようにして加熱した。 すると気体が発生 し,石灰水が白くにごった。 さらに十分に加熱し、 気体の発生が止まってか ら,石灰水からガラス管をぬいて火を消したのち, ピンチコックでゴム管 を閉じた。試験管Aには,黒色の物質に混じって赤かっ色の物質ができて いた。次に,酸化銅の質量は2.0gのまま、炭素の質量のみを変えて同様の実 験をくり返し行い、炭素の質量と反応後の試験管A内にある固体の物質の質 量との関係を調べた。 図2はその結果をグラフに表したものである。〈大阪改〉 図1 酸化銅と炭素 の混合物 ゴム管 図2 あ反 2.4 る応 (6)加熱後に増えた0.6gは化合した 酸素の質量。 この酸素と化合した マグネシウムの質量を考える。 2 還元されてできた金が (1) 再び酸化されるのを防ぐため (2) 電流が流れることを たしかめる。 2 0.1% 0.20 S 5, 試験管A ピンチコック 石灰水 (1) 記述 下線部 ① の操作をするのはなぜですか。 後 2.0 質管 1.6 62 のA 1.2 質内 量に0.8 0 0.06 0.12 0.18/0.24 0.30 炭素の質量[g]/ -2,00 (2)圧下線部②の物質が金属(鋼)であることを確かめる方法を書きなさい (3)この実験で起こった化学変化を,化学反応式で書きなさい。 (4) 酸化銅 2.0gと過不足なく反応する炭素の質量は何gですか。 (3)cultcxu+coz |(4) 0.15g 銅 (5) 炭素 |二酸化炭素 0 (6) A NAVI (5) 計算炭素の質量が0.24gのとき, 反応後に試験管内にある銅の質量,炭素の 質量はそれぞれ何gですか。 また, 発生した二酸化炭素の質量は何gです か。 (6) 計算酸化銅を還元して銅を10.0g得るには,酸化銅は何g必要ですか。 2. 4. 5:4=ス=10.0 +50.0 4 50.0 12.5g (4) 図2のグラフの傾きが変化 いる点が,酸化銅と炭素が過 なく反応しているところ。 (5) 酸化銅はすべて還元されて なっている。 反応した炭素 は ( 4 ) と同じ

未解決 回答数: 1
物理 高校生

赤線のところがわからないので教えてほしいです

と を 60 Chapter 2 力のつり合い 〈問2-3> 右ページ上図のように、2本の糸がそれぞれ角度45°で質量mのおもりを吊るし ている。このときの2本の糸の張力の大きさをそれぞれ求めよ。 ただし、 速度の大きさをgとする。 <解きかた この場合は, ませんね。 〈問2-1のように単純に力のつり合いの式を立てることがで 問2-3 糸 1 まずおもりにはたらく力を図示するという手順は同じです。 そこで力を鉛直方向と水平方向に分解してつり合いの式を立てるわけです 45° 45° ページ真ん中の図のようになります。 そして、張力を鉛直方向と水平方向に分解して、そのそれぞれについて 力のつり合いの式を立てると |求める張力の大きさをそれぞれT1 T2 とすると, おもりにはたらく力は右 物体にはたらく力を分解すると・・・ T₁sin 45° T2sin 45° T2 T 鉛直方向: T sin45° + T2 sin45° = mg ...... D 水平方向: T cos45°=Tzcos45° ・・・・・・② | sin45°=cos45°=- ですから、①②式を解いて v2 mg T₁ = T₂ = √2 ・・・答 このように、力のつり合いを考えるうえで、力を分解する方法はよく使われます。 この例のように、鉛直と水平に分解するのがいちばんオーソドックスですが, 他の分解のしかたでも問題は解けます。 どのように分解すれば,いちばんきれいに解けるかを意識するようにしましょう。 45° 45° さ Ticos 45° T2cos 45° 角をなす力Fの 水平 鉛直成分は Fcos 0, Fsin0に なるのじゃ 糸2 2-4 の分解 61 ここを理解したら どんぐりを 食べようっと 02 mgの分解成分 F F sin 0 0 F cos 0 000

未解決 回答数: 0
数学 高校生

この式がなんでこうなるか分かりません!! 教えてください🙇‍♀️

109 導関数の定義 びばん (1)(x)のx=1における微分係数が存在するとき,lim (1), f'(1) で表せ. f(x)-x³f(1) (2)f(x)=x2 のとき,定義に基づいて導関数 f(x) を求めよ. x-1 を ( 明治大 / 佐賀大) (解答 f(x)-xf(1) (1) lim- x→1 x-1 = =lim f(x)-f(1)xf(1)+f(1) | f(x)=(1) x³-1. f(1) = lim →1 x-1 =lim- x→1 f(1) f (1) は打ち消される |f(x) = f(1) = (x-1)(x²+x+1). (1) x-1 f(x)-f(1) -lim(x2+x+1).f(1) x-1 x→1 =f'(1)-(1+1+1)f(1) =f'(1)-3f(1) このときを x+h とすると, f(x+h)=(x+h)2 である (2) f(x)=x2 のとき, 000023 f(x+h)-f(x) (x+h)2-x2 2xh+h2 f'(x)=lim =lim -=lim -=lim(2x+h)=2x ん→0 h h→0 h h→0 h h→0 解説講義) f(b)-f(a) xがαから6まで変化するときの平均変化率は であり、 微分係数 f(a)はこの b-a f'(1)=lim 式でb を αに近づけたときの極限で,f'(a)=lim- f(b)-f(1) f(b)-f(a) b-a b-a ・・・① である. ここでα=1にすると, b 1 b-1 であり, b をxに書きかえるとf' (1)=lim- *→1 x-1 f(x)-f(1) となる.(1)では これを用いた.なお, 微分係数の定義である① は, b=a+hと置きかえて f(a)= lim- f(a+h)-f(a)...② と書かれることも多い h→0 h ②でαをxに書きかえると導関数 f(x) の定義になる.つまり, f'(x)=limf(x+h)-f(x) である. h→0 h (2)では「定義に基づいて f'(x) を求めよ」と要求されているから、この定義を用いて計算 していないものは0点である.ただし, 微分する (導関数を求める)ときに、毎回このような 計算をしていたら大変である.そこで, n=1, 2, 3, に対して, f(x)=x" のとき,f(x)=x1 ということを「公式」として,単に微分するだけのときは,「f(x)=x2 のとき,f(x)=2x」と アッサリやればよい. 文系 数学の必勝ポイント・ 導関数f'(x)の定義 関数 f(x) に対して,導関数f(x) == lim f(x+h)-f(x) である h

未解決 回答数: 1