学年

質問の種類

数学 高校生

青チャート数学Ⅲ77ページの練習45です 重要例題45の⑵と同じ様に 練習45もこのようにやったら間違いですか?

(1) すべての自然数nに対して、1+1が成り立つことを証明せよ。 1 1 k=1 1 (2) 無限級数1+ n + +....+ +...... は発散することを証明せよ。 2 3 ・基本 34, 重要 44 指針 (1) 数学的帰納法によって証明する。 (2) 数列{1} は0に収束するから、p.63 基本例題 34のように,p.61 基本事項 ② を利用する方法は使えない。 そこで, (1) で示した不等式の利用を考える。 n2" とすると k=1 k k=1 1/11/ 4 ここで,m→∞のときn→∞となる。 (1) k ≥1/12+1 ① とする。 無限級数 阻 解答 [1] n=1のとき k=1k 1/2=1+1/2=1/1/3+1 よって, ① は成り立つ。 +1 [2]n=m(m は自然数)のとき,①が成り立つと仮定すると100+ このとき 2 11+1 k=1 k (+1)+2+1 2m+1 k=2m+1 k 1 1 + ++ 2m+2 2m+1 > m2m2 1 1 +1+ + ++ 2m+1 2m+2. 2m+2m_ 1 m+1 +1+ .2m= +1 2m+1 2 よって, n=m+1のときにも ① は成り立つ。 1 12m+1=2m2=2"+2" 1 1 2m+1 2+2+2 (2+) 2m+k (k=1, 2,., 2-1) [1] [2] から, すべての自然数nについて①は成り立つ。 (2)S=2とおく。 n≧2" とすると, (1) から k=1 k m m Sn≥ +1 ここで,m→∞のときn→∞ で lim (7/27 +1)=0 .. limSn=∞ m-oo 8012 したがっては発散する。 an≦bnでliman=∞⇒limbn=∞ (p.343②) 72-00 12-00 n=1n 重45の結果を開いて、無限級数学は発散 0 (2)より、 m を示したい 同様に n Th=8とおく。≧とすると、 k=1 12/2計++言を計計+2より 2m m Th≥ 8 +1 : lin Th=00 " 題意は示された

未解決 回答数: 1
数学 高校生

(1)の問題で、なぜ2p,2p-1 となるのかがわかりませんでした。解き方を、理由含めて教えてもらえると嬉しいです。

例題 58 (2) 12299500 Gas ピタゴラス数の証明 ★★★☆ (1) αを自然数とするとき, αを4で割ったときの余りは0か1であるこ とを示せ (2)1,m,nを自然数とする。 +mmならば,L,mのうち少なくと も1つは2の倍数であることを証明せよ。 結論 向 RoAction 余りに関する証明は、余りによる分類 (剰余類)を利用せよ 例題56 (2)条件の言い換え (ア)だけが2の倍数 1(d) 問題編 5 46 ☆☆☆☆ 47 ★☆☆☆ 次の (1) (2) 次①② 思考プロセス 「結論」 Actiser P ( だけが2の倍数 (ウ), ともに2の倍数 3つの場合があり《Goit 証明しにくい Action» 「少なくとも~」の証明は,背理法を利用せよ 解 (1) 自然数αは2で割った余りに着目すると, 2p 2p-1 56 (自然)のいずれかで表すことができる。 (ア) α = 2p のとき a2= (2D)2=4p2 は自然数であるから, は整数である。(1 よって, d' を4で割った余りは0である。 4で割ったときの余りで 分類してもよいが, 2で 割ったときの余りで場合 分けして考えても うま 4でくることができ る。 (イ)a=2p-1 のとき a² = (2p-1)² = 4(p² − p) +1 は自然数であるから, は整数である。(= よって, d を4で割った余りは1である。 (ア)(イ)より, d を4で割ったときの余りは0か1である。 (2) l, mがともに2の倍数でないと仮定すると e) = M 48 ☆★☆☆ 49 ★★

未解決 回答数: 1
数学 高校生

(2)の問題で、なぜこのようにnを3で割ったときの場合分けをするのか、分かりませんでした。解き方の理由を含めて教えてください。

解 思考プロセス 例題 57 倍数であることの証明 nが整数であるとき, 次のことを証明せよ。 (1)nnは6の倍数である。 逆向きに考える 6 の倍数であることを示すためには? (2) (a) 6 × ( の形になる この とするか? (2)23+3m²+nは6の倍数であるこ (b) 連続する3つの整数の積である (C)「2の倍数」 かつ 「3の倍数」 である moin 201 (D) いずれかを示す。 Action» 連続する 個の整数の積は, m! の倍数であることを利用せよ (1)n-n=n(n-1)=(n-1)n(n+1) (n-1)n(n+1)は連続する3つの整数の積であり,この 3つの整数の中には、2の倍数, 3の倍数がそれぞれ少な <くとも1つ含まれるから 6の倍数である。 よって、n-nは6の倍数である。 (2) N = 2n+3n2+n とおくと N = n(2n²+3n+1)=n(n+1)(2n+1) ( 与えられた式3-nを因 A 数分解する。 一般に、連続する”個の 一般に, 連続する個の 整数の積はm! の倍数と なる。 2 == n(n+1) は連続する2つの整数の積であり,n, n+1の いずれかは2の倍数であるから, Nも2の倍数である。 例題 次に 56 (ア)n=3k(kは整数) のとき N = 3k(3k+1)(6k+1) (イ)n = 3 +1(kは整数)のとき I+(4-8) N=(3k+1)(3k+2)6k+3)=3(3k+1)(3k+2) (2k+1 (ウ) n=3k+2 (kは整数) のとき N=(3k+2) (3k+3)(6k+5)=3(3k+2)(k+1)(6k+5) んは整数であるから、(ア)~(ウ)のいずれの場合も N は3 の倍数となる。 したがって, 2n+3n+nは6の倍数である。 nを3で割ったときの余 りで場合分けして考える。 一類す こと

未解決 回答数: 1
英語 高校生

一時的性質を表す時は後置修飾ならばhidden treasureではなくてtreasure hiddenの方が良いと思ったのですがどのように判断すれば良いでしょうか?教えて頂きたいです。よろしくお願いいたします。

① 名詞の前から修飾する場合 He was looking at the burning fire. 彼は燃えている火を見つめていた。 They found a hidden treasure. 彼らは隠されている財宝を見つけた。 [fire と burn が能動関係] [treasure と hide が受動関係〕 【注1】 分詞が形容詞として働き、名詞を修飾する用法。 原則として、分詞が単独に用い られる場合は名詞の前から修飾する。ingin 【注2】修飾される名詞と分詞の間に能動関係が成立する場合は現在分詞, 受動関係が成 立する場合は過去分詞を用いる。 【注3】 自動詞の過去分詞は完了の意味を表すことがあるが, fallen, gone などの限られた 動詞にしか用いられない。 以下の例文では,自動詞 fall 「落ちる」 の過去分詞 fallen は 「落ちてしまった」 という意味で後ろの名詞 leaves を修飾している。 We walked on the fallen leaves. 私たちは落ち葉の上を歩いた。 #101 ex) & He is gone e 名詞の後から修飾する場合 He was looking at the fire burning brightly, antalon [fire と burn が能動関係〕 彼は赤々と燃えている火を見つめていた。in They found a treasure hidden in the cave, add (treasure と hide が受動関係] 彼らは洞穴に隠されている財宝を見つけた。ATER 【注1】 同様に, 分詞が形容詞として働き,名詞を修飾する用法。 原則として、 分詞が目 的語・補語・修飾語を伴う場合は名詞の後から修飾する。 【注2】 修飾される名詞と分詞の間に能動関係が成立する場合は現在分詞, 受動関係が成 立する場合は過去分詞を用いる。 look at those working man (恒常的性質) | 《補語となる分詞》 ① 主格補語となる分詞 その単品でも 後ろから飾しょくする場合 people walking seem very tined (一時的性質) Othe person involved X the involved person The teacher kept talking to the children! 先生は子供たちに話し続けた。 F ⑧ The teacher remained surrounded by the children. od 90 lo ju bois W 絶対一時的な の VoCo farl 先生は子供たちに囲まれたまだった。 絶対にない!

解決済み 回答数: 1
1/1000