学年

質問の種類

数学 高校生

相加・相乗平均を使って範囲を調べるのはなんでですか?範囲を求める問題って沢山あると思うんですけど、どうしたら範囲を調べるっていう発想になりますか。

関数 y=4x+1-2x+2+2 (x≦2) の最大値と最小値を求めよ。 00000 / 関数y=6 (2x+2-x)-2(4*+4¯*) について, 2*+2=t とおくとき,yをt を用いて表せ。また,yの最大値を求めよ。 指針 (1)おき換えを利用。2*=t とおくと,yはtの2次式になるから 2次式は基本形α(tp)+αに直すで解決! なお、変数のおき換えは,そのとりうる値の範囲に要注意。 (2)まず,X2+Y2=(X+Y) -2XY を利用して, 4+4 を表す。 ・基本 173 で表すとの2次式になる。なお,t=2*+2* の範囲を調べるには, 20, 2-x>0 に対し, 積 2*2=1 (一定) であるから,(相加平均) ≧ (相乗平均)が利用で きる。 (1) 2^=t とおくと t>0x≦2 であるから 0<t≦2|pg⇔2°≦2° 解答 したがって <t≦4 y を tの式で表すと (1) ① ケ y=4(2")"-4•2"+2=4f-4t+2=4(t-12) 2+1 ①の範囲において, y は t=4で最大, t=1/2で最小とな gol y 50 最大 る。 t=4のとき 2=4 ゆえに x=2 のとき 2x= 1 10 2 10of ゆえに [豆] (1/2) 4 よってx=2のとき最大値50, x=-1のとき最小値1 (2)4*+4=(2x)+(2-x)=(2' +2'*)'-2・2・2x=-2 2F•2-1=2°=1 ゆえに y=6t-2(t2-2)=-2t2+6t+4 ...... 20, 2x 0 であるから,(相加平均) ≧ (相乗平均)よ 相加平均と相乗平均の関係 り(*)2+2222×2 すなわち t≧2…② a>0, 6>0のとき a+b √√ab 2 成り立つ。 ここで,等号は 2*=2x すな わちxxからx=0のときで -lo こ YA m17 最大 2 8 り立つ。) (等号はa=bのとき成 ①から y=-2(1-2/21)2+1/27 4 ② の範囲において,yはt=2 のとき最大値8 をとる。 x=0のとき最大値 8 32 3 2 t t=2となるのは, (*)で 等号が成り立つときであ る。 ( 5 5章 29 2 指数関数

未解決 回答数: 2
物理 高校生

物理基礎の質問です 図aでは運動方程式、図bでは力のつりあいの式を立ててますが、なぜ運動方程式の物体Bについての式ではma=T-mgでT=mg▶︎ma=mg-mg▶︎ma=0にならないんですか? T=mgでつりあってるんじゃないんですか?

mのおもりBをつるした。 物 体Aと斜面との静止摩擦係数 μo, 動摩擦係数をμとして,次の問いに答えよ。 m B (1) 0 0 つまり板を水平としたとき, Bは下降した。 その加 速度の大きさを求めよ。 (2)001 のとき,Aが斜面下方へすべり始めた 。 M を求めよ。 (3)001のときのBの上昇加速度の大きさを求めよ。 「解説 (1) 図a で, 糸は軽いので, 両端の張力Tは等しい。 Aは「もうすべっている」 (p.41)ので, 動摩擦力μNを受ける。 〈運動方程式の立て方> (p.56)で. STEP Aは右向き, Bは下向きの 同じ大きさの加速度をもつ。 STER 2 図のように軸を立てる。 STEP 3 Aについて、 A μN a1 : 運動方程式: Ma1= +T-μN...... ① v : 力のつり合いの式: N = Mg... ② Bについて X: 運動方程式 ma」= +mg-T ③ ①+③より, N YA -X B 必ず 等しい Mg a₁ mg Tを消すためのおき, (M+m)a = mgμN まりの式変形♪ ②を代入して,aについて解くと, m-μM a₁ g 答 M+m 図 a 1 と同じ向きの力は 正, 逆向きの力は負 →ナットクイメージ m→∞にもっていくと, ag つまり, Bの自由落下に近づく 第5章 運動方程式 | 59

未解決 回答数: 1
数学 高校生

(4)からまったくわかりません... 解説お願いします

Think 例題 153 総合問題 右の図は,生徒20人に行った 整理と分析 301 **** 点で図形の得点が5点である生徒の 人数は2人である. の結果をまとめたものである. 関数 の得点xを横軸に,図形の得点yを 縦軸にとっている.図の中の数値は xyの値の組に対応する人数を表し ている。 数と図形のテスト(ともに10点満点) 10 9 8 1 7 1 11 6 1 11 y 5 121 4 たとえば、関数の得点が7 3 1 22 1 2 2 1 各生徒の得点について, x+y の最大値と, x-yの最大値 を求めよ. 0 01234 5 6 7 8 9 10 X が S 5. (2)図をもとに,次の表を完成させよ.また,各テストの得点の平均値 を求めよ. 点(点) 0 1 2 3 4 5 6 7 8 9 10 2435 10 関数(人) 0002 図形(人) 012335231 (3)(2)の表を使って各テストの標準偏差を求めると, 関数は2.8点 図形は3.6点, 関数と図形の得点の共分散は2.55 であった. 関 数と図形の得点の相関係数の値を四捨五入して小数第2位まで求 めよ.ただし,√7=2.646 とする.A0.80 右の表は、別の5人の生徒 A, B, 5人の生徒 ABCDE C,D,Eに同じ問題のテストを行 った結果である. 5人の関数と図 形の得点の平均値は, それぞれ 20 165 関数の得点 7 4 6 9 4 6 図形の得点 5 4 5 6 5 人の得点の平均値と同じであった.20人にこの5人を加えた合計 25人の生徒に関する関数と図形の得点の相関係数Rの値を小数第 2位まで求めよ. (5)これらのテストの結果について、次の①~③は正しいといえるか、 ① 生徒 25人の得点について、関数と図形の平均値からの散らば り具合は同じである. ② 生徒 20人の関数と図形の得点の正の相関はやや強いが,A~ Eの5人が加わると正の相関は少し弱まる. ③ 生徒 25人の図形の得点が一律に1点上がれば,25人の関数と 図形の得点の相関係数の値はより大きくなる. 第5章

回答募集中 回答数: 0
数学 中学生

これ答えも解説も載っていないんですが教えいただけますか

AE-BE, DAE = ∠CB ならば, DE=CE 数学 高広場 立方体の切り口 右の図のような立方体があります。 であることを証 なさい。 この立方体を、平面で切ったときの切り口の形について 考えてみましょう。 仮定と AE DE S J 土を,, めて 7 3 つの頂点A, C, Fを通る平面でこの立方体を 切ると、切り口のACFはどんな三角形になる でしょうか。 598 4つの頂点A, D, F, G を通る平面でこの立方体を 切ると、切り口の四角形 AFGD はどんな四角形に なるでしょうか。 予想してみまし B A G は、次のように説明することができます。 AFGD は、 平行な2つの平面である面ABCD と EFGHに交わっているから、 AD // FG ① 同様に, 面 ABFE と面 DCGH は平行だから、 AF // DG ② ①②から、四角形 AFGD は平行四辺形である。 また, AD AE, AD ⊥AB より 線分AD は ABFE 垂直だから、 AD AF ...... ③ ①.②.③ から, 四角形 AFGD は長方形である。 辺 BF, DH の中点を それぞれ M, Nとして から FOEF A B H B また,辺 BF上に点Kをとり, 3点 A, C,Kを 通る平面でこの立方体を切ると、切り口の△ACK は 10 どんな三角形になるでしょうか。 その理由も説明してみましょう。 K F 辺の長さに G 着目すると・・・ 1年では、直線と平面の位置関係について,次のことを学習しました。 ● 平行な2つの平面P,Qに別の平面R が交わって できる2本の交線 l m は平行である。 l どんな四角形になるでしょうか。 4点A, M, G, Nを通る平面でこの立方体を 切ります。 このとき、切り口の四角形 AMGN は Br その理由も説明してみましょう。 M m 15 直線ℓが 平面P上の直線 m, nの交点を通り、 直線 mnのどちらにも垂直に交わるとき, 直線ℓは平面Pに垂直である。 mm n 2 このことを使って, 立方体の切り口の形について,さらに調べてみましょう。 ■8 5章 三角形と四角形 立体を切る平面を いろいろと変えると, 切り口はどんな図形に なるのかな?

未解決 回答数: 1
数学 中学生

あってますか?間違えてるところあったら教えてください‼️

7 5章 三角形と四角形 三角形と四角形の活用 平行線と面積 >>> 右の図で, l/lmのとき, AABC=ADBC が成り立つ。 この式は △ABCと△DBCの m B 面積が等しいことを表しているよ。 教科書 P.170~173 平行な2直線間の距離 は1年で学習したね。 POINT 平行な直線間の距離 ℓ/mのとき, l上の どこに点をとっても, その点と直線との 距離は一定である。 A問題 等積変形 知技 P.171 学習日 月 日 2 平行線と面積 1 知技 教 P.170 下の図で, l/lmのとき, あとの問い に答えなさい。 下の図に, 辺BCを延長した半直線上 に点Eをとり, 四角形ABCD と面積が 等しい ABE をかく。 m B (1) △ABCと面積が等しい三角形を答えな さい。 A PBC (2)△ABDと面積が等しい三角形を答えな さい。 B (1) △ABE のかき方を次のように説明した。 □をうめて, 説明を完成させなさい。 点Dを通りACに平行な直線と, 辺 BC を延長した直線との交点を Eとすればよい。 なぜなら、このとき, ADAC ACE だから、 四角形ABCD=△ABC+ ADAC =△ABC+△ ACE A ACD (3) 図の中には,(1),(2), 面積が等し い三角形の組がもう1組ある。 その1組を, 記号 = を使って表しなさい。 (2) 上の図に△ABE をかきなさい。 =AABE AABE ADCE 2 Y

未解決 回答数: 1
1/45