学年

質問の種類

数学 高校生

左のページは絶対値取らないでも計算できますが,右ページは場合分けする必要があるっていうのの理由を知りたいです。どういう場合に場合分けをしなければいけないかは把握してます

73 00000 (2) x-2<0 -1<0-1≥0 X-2≥0 72 基本 40 絶対値を含む方程式 次の方程式・不等式を解け。 (1)|x-1|=2 (2)|2-3x|=4 (3)|x-2|<3 指針 ただし,(1)~(4)の右辺はすべて正の定数であるから, 絶対値記号を含むときは、場合分けをして、絶対値 記号をはずして考えるのが基本である。 |A|= 次のことを利用して解くとよい。 >0 のとき 方程式|x|=cの解はx=±c -c<x<c 不等式|x|<c の解は 不等式|x|>c の解は x<-c, c<x (1)|x-1|=2から x-1=±2 x1=2 または x1=-2 x=3,-1 (4)基本 A 11=1_^ -A 例題 41 絶対値を含む方程式 P.63 次の方程式を解け。 (1) x-2|=3x (2)|x-1|+|x-2|=x AKO 絶対値記号を場合分けしてはずすことを考える。 それには, |x-1=Xとおくと |XI=2 よって X=±2 | (2) |2-3x|=|3x-2 であるから, 方程式は 3x-2|=412-3x=4から 2-3x=±4 としてもよいが、 |= {_^ |A|= -A (A≧0 のとき) (A < 0 のとき) であることを用いる。 このとき, 場合の分かれ目となるの は, A=0, すなわち | 内の式 =0の値である。 (1)x2≧0x20, すなわち, x≧2とx<2の場合に分ける。 (2) 2つの絶対値記号内の式x-1, x-2が0となるxの 値は,それぞれ1 2 であるから,x<1, 1≦x<2, 2≦x の3つの場合に分けて解く (p.75 ズーム UP も参照)。 (1)[1] 章 19 2 x 場合の分かれ目 41次不等式 解答 すなわち よって ゆえに 3x2=±4 答 すなわち 3x2=4 または 3x2=-4 |-4|=|A|を利用 のとき, 方程式は x-2=3x これを解いて x=-1 x=-1 は x2を満たさ ない。 よって (3)|x-2|<3から x=2, -2 の係数を正の数に [2] x<2のとき, 方程式は -(x-2)=3x 1 3 -3<x-2<3 (3),(4)x2=Xと おくと解きやすくな これを解いて x= 2 x= は x<2を満たす。 2 重要! 場合分けにより,||を はずしてできる方程式の 解が、場合分けの条件を 満たすか満たさないかを 必ずチェックすること (解答の の部分)。 1 各辺に2を加えて -1<x<5 |X|<3から [1], [2] から, 求める解は x= (4)|x-2|>3から x-2<-3, 3<x-2 -3<X<3 したがって x<-1, 5<x |X|>3から 最後に解をまとめておく。 -2x+3=x X<-3, 3<X これを解いて x=1 x=1はx<1を満たさない。 [2] 1≦x<2のとき, 方程式は (x-1)(x-2)=x これを解いて x=1 - をつけてをはず す。 x-1≧0, x-2 < 0 x=1は1≦x<2を満たす。 (x-1)+(x-2)=x <x-1>0, x-2≧0 2 (2)[1] x<1のとき,方程式は (x-1)(x-2)=xx-1<0,x-2<0→ すなわち 絶対値を数直線上の距離ととらえる |b-alは,数直線上の2点A(a),B(b)間の距離を表しているから, x-2は数直線」 座標が2である点と点P(x) の距離ととらえることができる。 よって、(3),(4)の不等 満たすxの値の範囲は、下の図のように表すことができる。 |x-21=3 x-21>3 \x-21=3 [3] 2≦xのとき, 方程式は 2x-3=x すなわち これを解いて x=3 以上から、 求める解は y=x-21のグラスと方程式 x=3は2≦xを満たす。 x=1, 3 最後に解をまとめておく。

未解決 回答数: 1
数学 高校生

絶対値を含む方程式(場合分け)の範囲です。 1枚目2枚目のそれぞれ(2)の問題ですが、 X=1、-1を場合分けする際に 1枚目の時は(ⅱ)-1≦X≦1 2枚目の時は(ⅱ)-1≦X<1 なぜ一緒のこの2つ問題では符号が違うのでしょうか。 どういった違いがあるのでしょうか... 続きを読む

基礎問 18 絶対値記号のついた1次方程式 次の方程式を解け. (1) |.r-1|=2 |精講 |x+1|+|x-1|=4 絶対値記号の扱い方は11で学んだ考え方が大原則ですが、 合はポイントⅠの考え方が使えるならば、 場合分けが けラクです. (1) (解I) 解 HO |x-1|=2 は絶対値の性質より1=±2 よって, x=-1,3 (解Ⅱ) -11={ c-1|= だから, x-1 D (x≥1) -(x-1)(x<1) i) x≧1のとき ① は x-1=2 x=3 これは,x≧1 をみたす. ii) x<1のとき ①は -(x-1)=2 :.x=-1 これは, x<1 をみたす. よって, x=-1,3 (2) i) x<-1 のとき x+1<0, x-1 < 0 だから ②は(x+1)(x-1)=4 -2x=4 ... x=-2 これは,<-1 をみたす. i)-1≦x≦1 のとき +10, -1≦0 だから +1-(-1)- これをみたす (注)くのとき +1301>0 1ェー 28-4 ic これは、1<ェを (1) 甘)、血)より (2) A(-1). ら、②は 上の数直線により、 絶対値の 40となる で場合分 はじめにし た すかどう ① ェの値にかか ②x>1のとき (3) が大きくな くー1の ェが小さく ② ポイント いこと エック 演習問題 18 (1) ☆

解決済み 回答数: 1
数学 高校生

絶対値のついた方程式を解くとき、場合分けをした範囲にその範囲を満たす解がない場合があるのはどうしてですか。変なこと言っているのは十分承知なのですが教えていただけると嬉しいです。イメージ的には連立不等・方程式(勝手に作りました)を解いてるみたいなものなのですかね。

A (A≧0 のとき) -A (A<0 のとき) 基本 例題 41 絶対値を含む方程式 次の方程式を解け。 含む不等式の解法 (1)|x-2|=3x8-xS+ | (2) |-1|+|x-2|=x 指針 絶対値記号を場合分けしてはずすことを考える。それには, 141={_^ 00 であることを用いる。 このとき, 場合の分かれ目となるの は, A=0, すなわち, | |内の式=0の値である。 (2) (1)x2≧0と x-2<0, すなわち, x-2<0 x-2≥0 x≧2とx<2の場合に分ける。 x-1<0x1≧0 (2)2つの絶対値記号内の式x-1, x-2が0となるxの 値は,それぞれ1, 2であるから, x<1, 1≦x<2, 2≦x の3つの場合に分けて解く (p.75 ズーム UP も参照)。 2 x 場合の分かれ目 (1) [1] x2 のとき, 方程式は x-2=3x 重要 答 これを解いてx=-1 x=-1はx≧2を満たさ ない。 [2] x<2のとき, 方程式は これを解いてx= x= 2 2 1 [1], [2] から, 求める解は x= 2 場合分けにより,||を はずしてできる方程式の 解が、場合分けの条件を 満たすか満たさないか 必ずチェックするこ (解答の の部分)。 m 最後に解をまとめて (2)[1] x<1のとき,方程式は(x-1)(x-2)=xx-1<0, x-2<0- 不 -(x-2)=3x 1/1 は x<2を満たす。 すなわち -2x+3=x -をつけて」を これを解いて x=1 x=1はx<1を満たさない。 [2] 1≦x<2のとき, 方程式は (x-1)(x-2)=x これを解いて x=1 x=1は1≦x<2を満たす。 [3] 2≦x のとき, 方程式は (x-1)+(x-2)=x す。 x-1≧0, x-2<0 すなわち 2x-3=x 2 <x-1>0, x-2≧ > これを解いて x=3 x=3は2≦xを満たす。 以上から. 求める解は x=1,3 最後に解をまと y=x-2のグラフと方程式 (1)について y=x-2は, x≧2 のとき y=x-2 yy=3

解決済み 回答数: 1
数学 高校生

どうして最後、「合わせた範囲」になるのですか??

5 2 絶対値を含む不等式 0000 次の不等式を解け。 |x-1|+2|x-3|≦11 (1)x-4|<3x ズーム 則である。 (1)x-4≧0, x-40 の場合に分けて解く。 絶対値を含む不等式は、絶対値を含む方程式 [例題41] と同様に場合に分ける。 (2)2つの絶対値記号内の式が0となるxの値はx=1,3 よって, x<1, 1≦x<3, 3≦xの3つの場合に分けて解 く。 (2) UP 絶対値を含む 0 となる値を *-3<0 ずし, 方程式 x-10-1 なお, 絶対値を含む方程式では、場合分けにより,| | をはずしてできる方程式の解が場合分けの条件を満たす 方程式、不等 不等式につ かどうかをチェックしたが、絶対値を含む不等式では場合分けの条件との共通劇 をとる。 CHART 絶対値 場合に分ける (1) [1] x≧4のとき,不等式は x-4<3x [1] 解答 これを解いて x>-2 x≧4との共通範囲は x≥4 ① -(x-4)<3x [2] 例題 ま [1] [2 12のけ分 [2] x<4のとき,不等式は これを解いて x>1 x<4との共通範囲は 1 <x<4 求める解は,①と②を合わせた範囲で x>1 (2) [1] x<1のとき, 不等式は -(x-1)-2(x-3)≦11 よって 4 x- [1] 4 1 ≦x<1 [2] x<1との共通範囲は [2] 1≦x<3のとき, 不等式は x-1-2(x-3) ≦11 よって *≥-6 1≦x<3との共通範囲は [3] 3≦xのとき, 不等式は -6 3 1≦x<3 ② [3] x-1+2(x-3)≦11 よって *≤6 3≦xとの共通範囲は 3≤x≤6 求める解は,①~③を合わせた範囲で 4 ≤x≤6 3 練習 次の不等式を解け。 ③42 (1) 3|x+1|<x+5 (2)|x+2|-|x-1|>x 3 6

解決済み 回答数: 1
1/16