学年

質問の種類

生物 高校生

(1)のイ どうして1+qが分母の分数になるのかわかりません。教えてください。

□25 ハーディ・ワインベルグの法則(7) 次のI,IIの文章を読み,以下の問いに答 えよ。 ただし,数値は算出する際は,有効数字3桁で求めよ。 I ハーディ・ワインベルグの法則が成立している集団において, 自然選択が生じた 1章 場合,どのような変化が生じるのかを考える。自然選択の極端な例が致死である。 今,2つの対立遺伝子 A と a を考える。 a は Aに対して完全潜性で, aa が致死 であるとする。 A の頻度をp, aの頻度を g とする。 親世代の各遺伝子型頻度は, ハーディ・ワインベルグの法則に従った場合, 以下のようになる。 遺伝子型 AA Aa aa 合計 頻度 p² 2pq g2 1.00 ここに自然選択が加わり, aa が致死であるとすると, 次世代の遺伝子頻度は以 下のようになる。 遺伝子型 頻度 AA Aa 2pq aa 合計 1.00 - q² li G したがって,次世代のaの頻度 Q1 は (ア)のようになる。 さらに,その次世代のaの頻度,Q2 は イ)のようになる。 したがって, t世代後のaの頻度 4 は (ウ)のようになる。 (1) 上の文章のア~ウをαの式で記せ。 (2)g の初期値が0.500 であった場合, 100世代後のaの頻度を求めよ。 また, 算出 の過程も記せ。 II ハーディ・ワインベルグの法則が成立していない要因として,任意交配が行われ ていない場合(近親交配など)がある。任意交配が行われない例として自家受精 を考える。 親世代との頻度がそれぞれ0.500であるとする。 親世代ではハー ディ・ワインベルグの法則に従っていると仮定した場合,それぞれの遺伝子型の 頻度は以下のようになる。 遺伝子型 AA Aaaa 頻度 0.250 0.500 0.250 親世代で自家受粉が行われた場合,次世代での各遺伝子型の頻度は以下のように なる。 遺伝子型 AA 頻度 Aa aa (エ) (オ) (カ) (3) 遺伝子型の頻度エ,オカを求めよ。 (4) 今,潜性致死遺伝子の頻度が0.001 である集団を仮定する。 この集団で自家受精 が行われた場合、次世代で潜性致死遺伝子がホモ接合体になる確率は,任意交配 が行われた場合と比べて何倍となるか。 ただし, 近親交配以外の影響は無視でき るものとする。 また, 算出の過程も記せ。 (5) 近親交配による死亡率の増加や, 適応力の低下を何と呼ぶか。 (2020 東北大)

未解決 回答数: 0
数学 高校生

問題文の意味がいまいち理解できないです。そもそもKを、得点として終了するのだから得点は必ずKになるのでは無いのですか?教えて頂きたいです。

1からnまでの数字を1つずつ書いたn枚のカードが箱に入っ ている.この箱から無作為にカードを1枚取り出して数字を記録し, 箱に戻すという操作を繰り返す.ただし,回目の操作で直前のカー ドと同じ数字か直前のカードよりも小さい数字のカードを取り出し た場合に,k を得点として終了する.2≦k≦n+1を満たす自然数 kについて,得点がk となる確率を求めよ 東北大の一部 とする. カードの取り出 《解答》 カードの数字を出た順に a1, A2,A3, し方は全部でnk通りある.このうち ... * A1 < A2 < A3 < ... < ak となる場合は,a から ak までの数字の組み合わせはnCk通りで, 並べ方は 小さい順に1通り,それ以外は任意だから,この場合の確率は nck nk よって, 求める α < az <a3 <・・・ < ak-1 ≧ak となる確率は, a1 < Q2 < Q3 <… < ak-1 / ak (実際は ak-1 以降の大小は任意だから ai < az < az <・・・ <ak-1 と同じ)となる確率から ・・・ < ak-1 < ak となる確率を引いたものだから a1a2a3 <... nCk-1 1= nk-1 nCk nk n! = = = .k-1 n -1(n-k+1)!(k-1)! n!.n.k-n!(n-k+1) nk(n-k+1)!k! n!(n+1)(k-1) nk(n-k+1)!k! (k-1) (n+1)! nkk!(nk+1)! = n! nk(n-k)!k! n!(nk-n+k-1) nk(n-k+1)!k!

解決済み 回答数: 2
物理 高校生

【高校物理、電磁気学】 河合塾出版の参考書、「高校物理」の例題4-5で分からないことがあります。 (c)(d)を解説と異なる方法で求めようとしました。(c)は答えが合いましたが、(d)は合いませんでした。私の解答を書きますので、どこが間違っているかをご指摘頂きたいです。一応... 続きを読む

第1章 電場 275 例題 4-5 電場と電位・位置エネルギー 真空中の電荷と電場に関する下記の y 文において, (a)から (d) にあ てはまる式を記せ。 ただし, クーロン P(-d,d) の法則の比例定数をk [N·m²/C2], •C(0,d) 電子の電荷を -e [C], 電子の質量 をm[kg] とし, 無限遠点での電位を 0Vとする。 0(0, 0) x B(-d, 0) A(d, 0) (1)A(d,0) と点B(-d, 0) に正の電荷 Q を固定し,y軸の点 C(0, d) 電子を置く。 D(0,- -d). 点Cで速度 0 であった電子が電場で力を受けてy軸上を動くとする と、原点0での速さは (a) | [m/s] となる。 (2) 点Aと点B の正の電荷 Q のほかに, 点Cに電気量 Q [C] の点電 荷を固定する。さらに,これら3つの点電荷を固定したままで, y 軸上 の負の方向の無限遠点に置かれた電気量 - Q [C] の点電荷をy軸に 沿って点D (0, -d)までゆっくりと動かす。 このときに外力がする 仕事は(b) [J] である。 (3)点Aと点Bに電荷 Q, 点 C と点Dに電荷 - Q を固定した状態から, 点Cの電荷 Q をC→P→B の経路で点B まで, また点Bの電荷 Q をB→O→Cの経路で点 Cまで同時にゆっくりと動かす。 このとき外 力がする仕事は (c) [J] である。 さらに,点Aの電荷 Q と点B の電荷 Q を固定したままにして, 点Cの電荷Qをy軸の正の方向に向かって無限遠点まで,また点Dの 電荷-Qをy軸の負の方向に向かって無限遠点まで同時にゆっくりと 動かす。 このとき外力がする仕事は(d) [J] である。 (東北大) 解答 (1) (a) 点A,Bの電荷による点Cおよび点0の電位は, それぞれ, Vc= kQ kQ √2kQ + √2d √2d d kQkQ_2kQ Vo d V₁ = kQ+kQ d 求める速さをひとする。 力学的エネルギー保存則より, 1/12m+(e)xVo=(-e) Vc .. mv²= (2-√2) kQe d

解決済み 回答数: 1
数学 高校生

[2]-1<軸<3を軸<0としたのですが、不正解ですか

定数 は以 基本 例題125 2次方程式の解と数の大小 (1) 195 00000 2次方程式 x2-2(a+1)x+3a=0が, -1≦x≦3の範囲に異なる2つの実数解を もつような定数 αの値の範囲を求めよ。 [類 東北大 ] 基本 123 124 重要 127 指針 p.192, 194 で学習した放物線とx軸の共有点の位置の関係は, そのまま 2次方程式の解 と数の大小の問題に適用することができる。 すなわち,f(x)=x2-2(a+1)x+3a として 2次方程式f(x)=0が-1≦x≦3で異なる2つの実数解をもつ 放物線y=f(x) がx軸の1≦x≦3の部分と、異なる2点で交わる したがって D>0, -1<軸<3, f(-10(3)≧0で解決。 解答 3章 CHART 2次方程式の解と数々の大小 グラフ利用 D,軸,f(k) に着目 13 3 2次不等式 この方程式の判別式をDとし,f(x)=x2-2(a+1)x+3a とす る。方程式 f(x)=0が-1≦x≦3の範囲に異なる2つの実数 解をもつための条件は,y=f(x) のグラフがx軸の-1≦x≦3 の部分と、異なる2点で交わることである。 したがって,次の [1]~[4] が同時に成り立つ。 C -1<軸 <3 ya [1] D> 0 [2] -1<軸<3 [3]) f(-1)≥0 D [4] f(3)≥0-( [1] = {-(a+1)-1・3a=a-a+1=(a-2/21)2+2/27 よって, D>0は常に成り立つ。 ...... (*) [2] 軸は直線x=α+1 で, 軸について -1<α+1<3 すなわち -2<a<2: [3] f(-1)≧0から (−1)-2(a+1)・(-1)+3a≧0 ① 3 ゆえに 5a+30 すなわち a≧- [4] f(3) 0 から 32-2 (a+1) ・3+3a≧0 ゆえに -3a+3≧0 すなわち a≦1 33 ①,②③の共通範囲を求めて Oa+1 3 X -3 -2 3 1 2 a 5 - -≤a≤1 注意 [1]の(*)のように,αの値に関係なく、常に成り立つ条件もある。

未解決 回答数: 1
1/30