学年

質問の種類

数学 高校生

相加・相乗平均を使って範囲を調べるのはなんでですか?範囲を求める問題って沢山あると思うんですけど、どうしたら範囲を調べるっていう発想になりますか。

関数 y=4x+1-2x+2+2 (x≦2) の最大値と最小値を求めよ。 00000 / 関数y=6 (2x+2-x)-2(4*+4¯*) について, 2*+2=t とおくとき,yをt を用いて表せ。また,yの最大値を求めよ。 指針 (1)おき換えを利用。2*=t とおくと,yはtの2次式になるから 2次式は基本形α(tp)+αに直すで解決! なお、変数のおき換えは,そのとりうる値の範囲に要注意。 (2)まず,X2+Y2=(X+Y) -2XY を利用して, 4+4 を表す。 ・基本 173 で表すとの2次式になる。なお,t=2*+2* の範囲を調べるには, 20, 2-x>0 に対し, 積 2*2=1 (一定) であるから,(相加平均) ≧ (相乗平均)が利用で きる。 (1) 2^=t とおくと t>0x≦2 であるから 0<t≦2|pg⇔2°≦2° 解答 したがって <t≦4 y を tの式で表すと (1) ① ケ y=4(2")"-4•2"+2=4f-4t+2=4(t-12) 2+1 ①の範囲において, y は t=4で最大, t=1/2で最小とな gol y 50 最大 る。 t=4のとき 2=4 ゆえに x=2 のとき 2x= 1 10 2 10of ゆえに [豆] (1/2) 4 よってx=2のとき最大値50, x=-1のとき最小値1 (2)4*+4=(2x)+(2-x)=(2' +2'*)'-2・2・2x=-2 2F•2-1=2°=1 ゆえに y=6t-2(t2-2)=-2t2+6t+4 ...... 20, 2x 0 であるから,(相加平均) ≧ (相乗平均)よ 相加平均と相乗平均の関係 り(*)2+2222×2 すなわち t≧2…② a>0, 6>0のとき a+b √√ab 2 成り立つ。 ここで,等号は 2*=2x すな わちxxからx=0のときで -lo こ YA m17 最大 2 8 り立つ。) (等号はa=bのとき成 ①から y=-2(1-2/21)2+1/27 4 ② の範囲において,yはt=2 のとき最大値8 をとる。 x=0のとき最大値 8 32 3 2 t t=2となるのは, (*)で 等号が成り立つときであ る。 ( 5 5章 29 2 指数関数

未解決 回答数: 1
英語 高校生

間違っているところがあったら教えてください🙇‍♂️

1 Choose the best answer to fill in the blanks. (81) (1) Peter ( 1 teaches 3 will teach ) for ten years next month. 2 will be teaching will have taught /13 ( 東京電機大 ) (2) In my class, there are three students from abroad. One is from England and ( are from Australia. ①another (3) Our teacher is ( 2 others 3 the other the others ) to come by the time we promised to get together. 2 possible 3 probable A definite ) of the two men standing at the gate. I likely (4) My father is ( 1 more tall 2 taller (5) My parents objected ( ①to my climbing 3 the tall ) the mountain alone in winter. 2me of climbing 4 on me to climb the taller (京都産業大) (関西学院大) (近畿大) ト TИIO (千葉工業大) hearing (実践女子大 ). to consider (摂南 3 me to climbing (6) She had to shout to make herself ( I have heard 2 hear ③ heard (7) The project could be called a success, all things ( 2 considered 3 considering ) the sky, it will rain this afternoon. 1 consider (8)( ①Judging from 3 Though 2 Generally speaking ④It being (9) You must leave now; ( ), you will be late for your social studies class. ①instead 2 therefore 3 otherwise accordingly (10) We are now in the ( ) half of our training camp. 1 late 2 latter 3 later ④last ) wise and hardworking. 3 need ④needed (大阪学 (センタ (11) All teachers and students are not ( ①necessarily (12)( 2 necessary ) had the war begun when ①The moment ? No wonder terrorists hijacked a plane. 3 Hardly (13) Next week's seminar ought to provide ( 1 ours our ④As soon as ) with a lot of new information. ourselves 4 us

解決済み 回答数: 1
英語 高校生

以前画像3枚目の様に修飾限定予告のthatというものを習ったので今回もその形なのかと思い、それらのと入れずに訳してしまったのですがこのthoseの識別は文脈判断ということでしょうか? 教えて頂きたいです。よろしくお願いいたします。

実理 K The starting point for today's *meritocracy, of course, is the idea that intelligence exists and can be measured, like weight or strength or fluency in French. The most obvious difference between intelligence and these other traits is that all the others are presumably changeable. If someone weighs too much, he can go on a その人 →Heyで受けるのが一般的 5 diet; if he's weak, he can lift weights; if he wants to learn French, he can take a course. But in principle he can't change his intelligence. There is another important difference 原則として MV between intelligence and other traits. Height and weight and speed and strength and サフィス体例 関係性が強い文がくる even conversational fluency are real things; there's no doubt about what's being 間違いなん measured. Intelligence is a much murkier concept. Some people are generally (2) m2 Vogue 10 smarter than others, and some are obviously talented in specific ways; they're chess 天才 S masters, math *prodigies. But can the factors that make one person seem quicker than another be measured precisely, like height and weight? Can we confidently say that one person is 10 percent smarter than another, in the same way we can say he's 10 へんて、いつだっ S percent faster in the hundred-yard dash? And can we be confident that two thirds of 櫂へん 言いかえ 15 all people have IQs within one standard deviation of the norm that is, between 90 ように and 110 - - as we can be sure that two thirds of all people have heights within one standard deviation of the norm for height? Yes, they can, and yes, we can. besure least, are the answers that the IQ part of the meritocracy rests on. Those, at (3)-

解決済み 回答数: 2
1/1000