学年

教科

質問の種類

工学 大学生・専門学校生・社会人

⑷ばんがわかりません。教えて欲しいです

入り [2. 材料力学〕 1 下図に示すように、1本の敷御製棒材 PRが一端を体にRでピン結合され、 他端をPで 剛体棒 OQにピン結合されている。 OP およびORの長さを1.4mとし、秋鋼製棒材 PR の横断面積をA=1.2cm²とする。また、壁OR(y軸)とOQx軸)とのなす角は90℃とする。 点Qに荷重 W=15kN が作用したとき次の設問 (1)~(4)に答えよ。 R 0 Q e W 3l 2 13 (1) 軟鋼の縦弾性係数Fとして最も近い値を下記の [数値群] から選び、その番号を解答 用紙の解答欄 【A】 にマークせよ。 [数値群] 単位:GPa ① 80 ② 106 ③ 150 ④206 ⑤ 240 (2) 軟鋼製棒材 PRに作用する張力Tを求めるための式で正しいものを下記の 〔数式群] か ら選び、その番号を解答用紙の解答欄 【B】 にマークせよ。 [数式群] ① W 2 W W √3W 3W ② ③ (5) 3 √2 √2 「2 IL AE (3) 軟鋼製棒材 PR の伸びを求めるための式で正しいものを下記の [数式群] から選び、 その番号を解答用紙の解答欄 【C】 にマークせよ。 [ 数式群] ◎JMDIA We We 2We 3We ① ② ③ ⑤ 2AE √3AE AE AE √3 We AE -2- 点 Qy軸方向変位y を計算し、 その答に最も近い値を下記の数値群〕 から選び、 その番号を解答用紙の解答欄 【D】 にマークせよ。 [数値群] 単位:mm ① 3.4 54 ③ 6.5 ④8.3 ⑤ 9.4 3wX A = 2.5mm AE >C0545=1.31mm 3×15000×1,4 1.2×104 × 206GRα 0.656 0.909 -3- ◎JMDIA

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

6は5よりq=0になりました。 合っているか教えて欲しいです。 5.6が不安です!

原点 0 を中心とし、 厚さを無視できる、 半径 & の導体球殻 A と A より小さい半径 l2 ( l1 > l2) の導体 球殻 B のふたつの導体球殻上に分布する電荷が作る静電場について考えたい。 初めは、 導体球殻 A に電荷量 Q を与え、導体 球殻 B には 電荷を与えない状態にしておく (下図左側参照)。 その後、ふたつの導体球殻を導線Lでつなぎ、その結 果、初めに導体球殻 A にあった電荷のうち電荷量だけが導線L を通って電流として流れ、 導体球殻 B へ移動して静 止した状態になったとする。 ただし、 電荷の移動後においては、電荷は導線L上には分布せず導体球殻 A から B へ電 荷量αの電荷が移動しただけで、 いずれの導体球殻にも新たな電荷は与えないものとする(下図右側参照)。ふたつの導 体球殻上の電荷分布が作る静電場E'(r) は、 球対称性より、 l₁ B Q と書くことができ、 導線Lによる球対称性からのずれは無視できるとして以下の間に答えよ。 ただし、 r = |r | は、原点 から任意の位置までの距離であり、E'(r) はr=|r| のみに依存する求めるべき未知関数である。 また、 rを半径とし て原点を中心とする仮想的な球の領域をV、Vの境界をなす球面を Sとし、導体球殻と導線以外は真空で、真空の誘電 率を co とする。 なお、 r の値によって分類する必要がある場合には明確に場合分けして解答することとし、 問6は、 問 1から問5 までに対して正確かつ明確な導出が記述されている場合にのみ採点対象とする。 0 O l₂ 基礎物理学B 第2回レポート問題 Tº A E(r) =E(r) T T l₁ B Q-9 q O A l2 L ア 1.位置rにおける球面 S上の外向き単位法線ベクトルnを、rとr≡|r | を用いて表せ。 2. 球面 S を貫く電束を計算し(積分を実行すること)、未知関数 E(r) を含む形で表せ。 3. ふたつの導体球殻を導線Lでつなぐ前の状態における未知関数 E(r) の関数形を求めよ。 4. ふたつの導体球殻を導線Lでつないだ後の状態における未知関数 E(r) の関数形を求めよ。 5. ふたつの導体球殻を導線Lでつないだ後の状態において、 導体球殻 A と導体球殻 Bの静電ポテンシャルの差 A-B を線積分によって計算し、gを含む形で表せ。 6. 導体中での静電場の性質を考慮して、 g の値を求めよ。

回答募集中 回答数: 0
工学 大学生・専門学校生・社会人

(4)の解き方が分かりません。

【3】(機械設計技術者試験 3級) 下図に示すように、1本の軟鋼製棒材 PR が一端を剛体壁にRでピン結合され、他端をPで 剛体棒OQにピン結合されている。 OP および OR の長さをℓ=1.4mとし、軟鋼製棒材 PR の横断面積をA=1.2cm² とする。 また、壁OR (y軸)とOQ(x軸)とのなす角は90℃とする。 点Qに荷重 W = 15kNが作用したとき次の設問 (1)~(4) に答えよ。 R [数値群] 単位: GPa 180 l [数式群〕 W 2 (1)軟鋼の縦弾性係数E として最も近い値を下記の 〔数値群〕から選び、 その番号を解答 用紙の解答欄 【A】 にマークせよ。 [数式群〕 3ℓ 2 We 2AE ② 106 (2) 軟鋼製棒材 PR に作用する張力を求めるための式で正しいものを下記の 〔数式群〕か ら選び、その番号を解答用紙の解答欄 【B】 にマークせよ。 W 3 [数値群〕 単位:mm ① 3.4 ③ 150 We √3AE W W √2 ② 5.4 4 206 X (3) 軟鋼製棒材 PR の伸びを求めるための式で正しいものを下記の 〔数式群〕 から選び、 その番号を解答用紙の解答欄 【C】 にマークせよ。 3 6.5 √3W √2 √2We 3We AE AE ⑤ 240 ④8.3 (5) (4) 点Qy 軸方向変位fy を計算し, その答に最も近い値を下記の 〔数値群〕から選び、 その番号を解答用紙の解答欄 【D】 にマークせよ。 3 W 2 3 We AE 59.4

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

すごい簡単なことを聞いてるかもしれないんですけど、❔のところが分からなくて、どうやってb1、b3、、、とわかるのですか?

指針>2つの等差数列の共通な項の問題(例題 93)と同じように, まず, a:=Dbmとして、1とm C=b, C2=bs, C3=bs となっていることから, 数列 {bn} を基準として, bm+1 が数列a 列 {a}の項でもあるものを小さい方から並べて数列 {cm}を作るとき、数外に 数列{a,}, {b,}の一般項を an=3n-1, bn=2" とする。 数列 (bn} の項のうち、 重要 例題100 等差数列と等比数列の異週県 1c の一般項を求めよ。 重要 93, 基本物 関係を調べるが,それだけでは {cn}の一般項を求めることができない。 そこで、数列 {an}, {bn} の項を書き出してみると, 次のようになる。 {an}:2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, {bn}:2,4, 8, 16, 32, 形々 指査 の項となるかどうか, bm+2 が数列 {an} の項となるかどうか, を順に調べ、規則性 見つける。 解答 a;=2, b=2 であるから 数列 {an} の第1項が数列{bn} の第 m項に等しいとすると Ci=2 37-1=2" bm+1=2"+1=2".2=(37-1)·2 =3-21-2 よって, bm+1は数列 {an} の項ではない。 ゆえに の 43-○-1の形にならない。 のから bm+2=26m+1=3·47-4 =3(41-1)-1 のゆえに, bm+2 は数列 {an} の項である。 fcn}:b, ba, bs, ………) 数列 {co} は公比 2° の等比数列で, Ci=2であるから C=2-(2°)"-!=2n-1 (2 したがって 4c,= などと答えても い。 検討)合同式(チャート式基礎からの数学 A 参照)を用いた解答 3n-1=-1=2(mod 3) であるから, 2"=2(mod3) となる mについて考える。 [1] m=2n(n は自然数)とすると 227=4"=1"=1(mod 3) [2] m=2n-1(nは自然数)とすると 27-1=22(nー1).2=4"-1.2=1"-1.2=2(mod 3)

未解決 回答数: 1
1/2