経営経済学 大学生・専門学校生・社会人 8日前 教えていただきたいです🥲 R6 特別区 【No.24】 ある市場において、 需要曲線DD、 供給曲線SSが次の図のように与 えられているとする。 このとき、 マーシャル的調整過程において、 各均衡点a、b に関する記述として、妥当なのはどれか。 価格 D a D S 0 需要量供給量 1 a点は、 左方に対しても、 右方に対しても不安定である。 2 a点は、 左方に対しても、 右方に対しても安定である。 3 a 点は、 左方に対しては安定であり、 右方に対しては不安定である。 4 b点は、 左方に対しては不安定であり、 右方に対しては安定である。 5 b点は、 左方に対しては安定であり、 右方に対しては不安定である。 回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人 8日前 マクロ経済 国民経済計算、産業関連分析の問題です。 答えが分からないものが多いのですが教えていただきたいです。 H19 特別区 次の表は、 封鎖経済の下で、 すべての国内産業がP. Q及びRの三つの産業部門に分割されている とした場合の産業連関表であるが、 表中のア~カに該当する数字の組合せとして、 妥当なのはどれか。 産 中 最終需要 総産出額 投入 P産業 Q産業 R産業 中 PR 10 30 ア 100 190 間 投 Q 産業 20 80 60 イ ウ R 産 業 40 90 90 170 390 付加価値 総投入額 エ 110 190 オ 310 カ ア イ ウ エ オ カ 1 50 150 310 120 190 390 250 150 320 120 190 3 60 160 310 120 140 89 390 390 4 60 160 320 F 70 140 400 5 60 160 310 70 140 400 R4 特別区 【No.29】 次の表は、 ある国の、 2つの産業部門からなる産業連関表を示したも のであるが、この表に関する以下の記述において、 文中の空所A、Bに該当する数 字の組合せとして、妥当なのはどれか。 ただし、投入係数は、全て固定的であると 仮定する。 産出 中間 要 最終 総産出額 投入 産業 ARI 50 産業ⅡI 国内需要 純輸出 50 ア 10 イ 中間投入 産業ⅡI 25 100 40 35 200 付加価値 75 50 投入額 150 この国の、現在の産業Ⅰの国内需要 「ア」は Aである。 今後、産業Iの国内需要 「」 が70%増加した場合、 産業Ⅱの総投入額 「ウ」は B 1%増加することになる。 A B I 40 6 2 40 8 3 40 24 4 80 46 5 80 68 H28 特別区 次の表は、ある国の農業と工業の2つの部門からなる産業連関表であるが、この表に関する記述と して、文中の空所A~Cに該当する数字の組合せとして、妥当なのはどれか。 ただし、投入係数はす べて固定的であると仮定する。 出 中間 要 投入 10 最 終 工業 国内需要 純輸出 20 10 0 要 産出額 40 中間投入 工業 20 40 10 80 貸金 5 5 付加価値 利 5 15 総投入額 40 80 この国の国内総生産はAである。 また、 農業の国内需要と工業の純輸出がそれぞれ5増加した 場合、農業産出額はB増加し、 工業の産出額は 増加する。 A B C 1 10 15 25 2 20 15 25 3 20 20 20 4 30 15 25 5 30 20 20 回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人 8日前 マクロ経済 国民経済計算、産業関連分析の問題です。 答えが分からないものが多いのですが教えていただきたいです。 H22 特別区 次の表は、 ある国の経済活動の規模を表したものであるが,この場合における国民所得を示す値は どれか。ただし、海外からの要素所得の受け取り及び海外への要素所得の支払いはないものとする。 民間最終消費支出 290 1 345 2355 3 365 4 375 5 385 間 政府最終消費支出 国内総固定資本形成 財貨・サービスの輸出 財貨・サービスの輸入 固定資本減耗 接 90 120 80 70 100 税 40 補 助 金 5 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 10日前 どうしてnを無限大にしたときに0になることを証明しているんですか? f(x)=f(0) + f'(x+ 2! Rn(x) = 1! r(@s+... f(n)(0zzn (001) n! f" (0) x2 +... + 44 マクローリン展開 第2章 微 f(x) が0を含む開区間 I で無限回微分可能(すべ てのnに対してn回微分可能) であるとき, 任意のæ∈I と任意のnEN に対して 2.4 テイラーの定理 45 【解】 (1) を示す. 例18より Rm (z) = 0x n! -T” だから1章例題2より, f(n-1) (0) 0x -x-1 (n-1)! + Rn(x), |Rn(x)|= = n! || xn "ex - n! →0 (n→ ∞) f(x)は をみたす 日=日(π,n) が存在する. ここでもしRn(x)0 (n→∞)なら -> f'(0) f" (0) f(x)=f(0) + -x+ 22 +・・・ + f(n) (0) -xn 1! 2! n! +... と無限級数で表される. 右辺の無限級数を f(x) のマクローリン展開ある はマクローリン級数という(級数については6章を参照のこと)。 は証明を省略する (6章 6.4 節参照). 問21 例20の (2) (3) を示せ. 注eのマクローリン展開 (1) において,π=i0 (iは虚数単位; i = √-1) と おくと, sin π, cosæ のマクローリン展開 (2), (3) から eid=cos0+isin O が得られる.これをオイラー (Euler) の関係式という. となり結論を得る。 (2), (3) も同様に示される。 (4), (5) の証明には、 定理 12 において別の形の剰余項(コーシーの剰余など) をとる必要がある. ここで 例20 T xn (1) ez=1+ + + + n! (-x<x<∞) 問22|x|<1のとき次の級数展開が成り立つことを示せ。 ( 6章定理1参照) I 2.5 2n 1 (2) sin x = + 1 3! ・+ (−1)n-1. 5! +... (2n-1)! log 1+2=2(x+++...) 3 5 (-x<x<∞) x2n + .... + (−1)". [( 2n) ! ·+(-1)n−12 +・・・ (-∞<x<∞) x2 24 (3) cos x = 1- 2! 4! x2 (4)log(1+z)=x_ x3 + 2 3 n 1.3...(2n-3) 2.4... (2n) (−1<x≤1) (5)(一般の2項定理) | ネイピアの数とオイラー は任意の実数とする. +(-1)^- 「対数」という言葉はネイピアが導入した. オ イラーは級数 (1+m) = 1 + - a a(a-1)²+ 1 1 1 2! 1+ + +・・・+ 1! 2! ala-1)...(a− n + 1) (Iml<1) を考え、その和をeで表した.また,その数値を計算し,eを底とする対 問23|x|<1のとき次の級数展開が成り立つことを示せ. 1 (1) (1+m)2 = 1-2x+3x² -.... .+ (−1)"(n+1)x" +... (2) V1 +æ=1+zx- 1 1 2 x² 2.4 2 1.3 + 2.4.6 2.3 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 12日前 円の問題です。下線部なのですが、なぜ2つの円の2つの交点と1つの円&直線の方程式の2つの交点が同じなのですか? 9A 385kを定数として, 方程式 k(x2+y2-5) Jot +(x2+y2+4x-4y+7)=0 ... ① を考えると, ① の表す図形は2円の2つの交点 を通る。 (1) 図形 ① が点 (4, 3) を通るとき k(16+9-5)+(16+9 + 16-12+7) = 0 よって 20k+36=0 ゆえに k= 9 これを①に代入して整理すると x2+y2-5x+5y-20=0 未解決 回答数: 1
数学 大学生・専門学校生・社会人 12日前 至急教えて欲しいです🙏 1. 次の [1] の方法で表示された集合を [2] の方法で表せ. (1) A={0,4,8, 12, 16, 20} (2) B={1,3,5, 9, 15, 45} 2.全体集合をU= { 1, 2, 3, 4, 5, 6,7,8,9}とし,A={3,4,5,7,8}, B ={1, 2, 5, 6, 9} とする.このとき, 次の集合を求めよ. (1) A∩B (2)Ā (3) B (4) AUB 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 13日前 答えあってますか? X は実数とする。 実数全体を全体集合ひとするとき,Uの部分集合 A={x-1x5}, B ={x|-2<x<2} について、次の集合を求めよ。 {x1-1≦x<2} (1) AnB (2) AUB {x120x (3) AnB {x120x5} -2 A B (4) AnB {xx>-2-5≦x} 2345 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 14日前 εが任意だから赤線のように置かれているのがわかりません🙇♀️ n! (2) 1.3.5... (2n-1) ーの例題については, 演習問題2で解説する 1 それでは,ダランベールの判定法で, (i) 0≦r<1の場合に、なぜ 項級数が収束するのか,その証明を入れておくよ。 (i) 0≦r<1の場合 an+1=rのとき,これを-N論法で書き換えると、 n→∞ an >0,N>0s.t.n≧N ⇒ an+1- | a n + 1 = r | << & an となる。 1-L ( > 0) とおいてもいい。 す 20 ここで, e は任意より,c= 2 これが, 証明のコツ n=N,N+1,N+2,... のとき, この部分のみを変 an+1 -r< an 2 水上より1 < an+1. 1-r -r< an 2 an+1<rt an 1 1+r 2 2 = 2 ≦R 0≦r <1より, 1≦1tr<2 1 1+r -≤ 2 2 未解決 回答数: 0
公務員試験 大学生・専門学校生・社会人 17日前 写真のような問題で、パターンを書き出すときよくパターンの書き漏れをしてしまいます なにかコツあれば教えてください😭😭 整数 24×36×4cの正の約数の個数の最大値はいくらか。 ただし, a, b, cは正の整数であり,a+b+c=5 を満たすものとする。 5/1考え方、パターン煮ます のミス 1. 14 2.16 3.18 4.21 5.24 解決済み 回答数: 1
公務員試験 大学生・専門学校生・社会人 29日前 解説の最初の式の分母に+150があって分子に+150がないのはなぜですか ★★ No.49 25%の食塩水がある。この食塩水から100gを捨てて150gの水を加 えたところ10% の食塩水ができた。 さらに50gを捨てて25gの食塩を 加えると,何%の食塩水ができるか。 1 15% 2 16% 318% 4 20% 522% 解決済み 回答数: 1