学年

教科

質問の種類

経営経済学 大学生・専門学校生・社会人

マクロ経済 国民経済計算、産業関連分析の問題です。 答えが分からないものが多いのですが教えていただきたいです。

H19 特別区 次の表は、 封鎖経済の下で、 すべての国内産業がP. Q及びRの三つの産業部門に分割されている とした場合の産業連関表であるが、 表中のア~カに該当する数字の組合せとして、 妥当なのはどれか。 産 中 最終需要 総産出額 投入 P産業 Q産業 R産業 中 PR 10 30 ア 100 190 間 投 Q 産業 20 80 60 イ ウ R 産 業 40 90 90 170 390 付加価値 総投入額 エ 110 190 オ 310 カ ア イ ウ エ オ カ 1 50 150 310 120 190 390 250 150 320 120 190 3 60 160 310 120 140 89 390 390 4 60 160 320 F 70 140 400 5 60 160 310 70 140 400 R4 特別区 【No.29】 次の表は、 ある国の、 2つの産業部門からなる産業連関表を示したも のであるが、この表に関する以下の記述において、 文中の空所A、Bに該当する数 字の組合せとして、妥当なのはどれか。 ただし、投入係数は、全て固定的であると 仮定する。 産出 中間 要 最終 総産出額 投入 産業 ARI 50 産業ⅡI 国内需要 純輸出 50 ア 10 イ 中間投入 産業ⅡI 25 100 40 35 200 付加価値 75 50 投入額 150 この国の、現在の産業Ⅰの国内需要 「ア」は Aである。 今後、産業Iの国内需要 「」 が70%増加した場合、 産業Ⅱの総投入額 「ウ」は B 1%増加することになる。 A B I 40 6 2 40 8 3 40 24 4 80 46 5 80 68 H28 特別区 次の表は、ある国の農業と工業の2つの部門からなる産業連関表であるが、この表に関する記述と して、文中の空所A~Cに該当する数字の組合せとして、妥当なのはどれか。 ただし、投入係数はす べて固定的であると仮定する。 出 中間 要 投入 10 最 終 工業 国内需要 純輸出 20 10 0 要 産出額 40 中間投入 工業 20 40 10 80 貸金 5 5 付加価値 利 5 15 総投入額 40 80 この国の国内総生産はAである。 また、 農業の国内需要と工業の純輸出がそれぞれ5増加した 場合、農業産出額はB増加し、 工業の産出額は 増加する。 A B C 1 10 15 25 2 20 15 25 3 20 20 20 4 30 15 25 5 30 20 20

回答募集中 回答数: 0
看護 大学生・専門学校生・社会人

お願いします

I. 薬物療法について 1. 以下の薬物を何というか答えなさい。 1)主として、喀痰を伴わない乾性咳嗽の対症療法として使用される薬物 2)閉塞性肺疾患において、気管支平滑筋を弛緩させることにより、気管支狭窄による病態を改善す る目的で使用される薬物 3)苦痛を軽減し気道の浄化をたすける目的で使用され、気道の分泌物 (痰) を喀出しやすくする薬物 2.上記2)の薬剤において、血中濃度が上昇すると重篤な副作用をきたすことがあるため、適宜、血 中薬物濃度のモニタリングを行う必要のある薬剤は何か答えなさい。 3.以下の薬物療法について、【】には適切な語句をしには語群から選び記入しなさい 1) 抗微生物薬は、【ア 】薬、抗真菌薬、抗ウィルス薬などがある。 期待される効果を得ると同時に (① )の蔓延を予防するため、処方された投与量・投与間隔・投与期間をまもるよう指導する。とくに、抗 結核薬は、【】により、服用を目で確認する。 開院のA 2) 抗アレルギー薬としては、(②)が代表的であり、(3)の長期管理に有用である 3)(@s )は、全身性の副作用はほとんどみられないが、嗄声や口腔内カンジダ症などの有害作用の予防 *】を行うよう指導する。 のため、使用後は【 4) 【 】は、強力な抗炎症作用・抗アレルギー作用・免疫抑制作用をもつ薬物であり、気管支喘息などの さまざまな疾患の治療に有用である。 5) 【オ 】は、大きく分けて化学療法薬、 分子標的治療薬、免疫チェックポイント阻害薬がある。 【語群】 吸入ステロイド薬 気管支炎 ロイコトリエン受容体拮抗薬 日和見感染 ST合剤 肺気腫 喘息 間質性肺炎 薬剤耐性菌 Ⅱ. おもな治療・処置について 1. 以下の問いに答えなさい。【 】には適切な語句を、( )は適切な語句を選び記入しなさい。 1) 呼吸不全とは、呼吸機能障害のために室内空気を呼吸したときに動脈血酸素分圧(Paoz)が I mmHg (Torr)以下、すなわち(① 低酸素症 低酸素血症)となる状態をいう。 2) 呼吸不全の臨床症状を3つ、答えなさい。 3) 呼吸不全は、換気状態により 【 】呼吸不全・【 】呼吸不全に分類される。 換気障害を伴うの 【 】呼吸不全である。 4)【オ 】は、吸入器中の酸素濃度を高めることにより、動脈血中の酸素量を高めて酸素の供給を改善す ることを目的とした治療である。 5) 吸入器具は、【カ 】と【 】に分類される。 【カ】は、器具のなかにあらかじめ薬剤が充填されて おり、吸入の際に一定量の薬剤が使用される。 【キ】は、使用するたびに1回分の薬液を器具に入れて使

回答募集中 回答数: 0
資格 大学生・専門学校生・社会人

簿記についての質問なのですが、業務的意思決定の内製か購入かの意思決定で、2通りの内製可能量が算出できる場合で数量が少ない方を内製可能量にする理由は、少ない方の数量は共通して発生するからということでしょうか? 例えば、写真の解説では甲材料は1,600個で遊休時間は2,000個... 続きを読む

13,884万円 15,000個 購入案: 16,000x ◆総需要量 15.675個 16,000個 ここで、 15,000x +2,200,000 <16,000xとすれば、 x2,200個 したがって、部品Yの年間必要量が2,201 個以上であれば、 内製案の方が有利である。 〔問2〕 1. 内製する場合の関連原価 部品Zの1個あたり関連原価を次のように計算する。 無関 O 直接材料費 2,000円/kg×5kg/個 直接労務費 2,400円/時×4時間/個 変動製造間接費 1,200円/時 × 4時間/個 合 計 = 10,000円/個 = 9,600 = 4,800 24,400円/個 (注)消費賃率 : 3,000円/時×80%=2,400円/時 2. 年間内製可能量 甲材料の消費可能量は8,000kg (=32,000kg-12,000個×2kg/個)、 遊休時間は8,000時間(= 20,000時間12,000個×1時間/個) である。 したがって、 内製可能量は次のとおり計算され、甲 材料の条件から部品 Zの年間必要量3,000個のすべてを内製することができず、 1,600個は内製する 1,400個は購入することになる。 間(= い 内製可能量 年間必要量 甲材料 8,000kg 5kg/個=1,600個 3,000個 遊休時間 8,000時間 4時間/個=2,000個 < 3,000個 3. 関連原価の比較 内 案 購入案 直接材料費 直接労務費 変動製造間接費 購入原価 10,000円/個 ×1,600個=16,000,000円 9,600円/個 × 1,600個= 15,360,000円 25,000円/個 ×1,400個= 4,800円/個 × 1,600個= 3 7,680,000円 5,000,000円 25,000円/個 ×3,000個= 75,000,000円 合 計 74,040,000円 75,000,000円 000円 000円 る。 円)。 両案の差額: 75,000,000円 <購入案〉-74,040,000円 〈内製案> = 960,000円 したがって、 部品 Zについて内製案の方が、 購入案より原価が960,000円だけ低く有利である。

未解決 回答数: 1
物理 大学生・専門学校生・社会人

○初等力学の質問です。 以下に添付している問題⑵~⑻の解答を教えて下さい🙇‍♀️。計算の過程も書いて頂ければ幸いです。 もし、可能でしたら自身の回答における間違い等を確認し、教えて頂けると非常に有難いです。

1 内径aの円筒面の一部が図1のようにA点において水平面に滑らかに接している。 水平面上にばね(ば ね係数k: 質量は無視できる)を設置し、 ばねを α/2だけ締めて静かに離すことで質量mの小球Pを円筒 面に向けて発射する。 重力加速度をg とし、また水平面、 円筒内面はともになめらかであるとする。必要 な物理量は定義した上で用いること。 なお、 各設問に対する解答は解答用紙の所定の欄に導出過程ととも に記入すること。 (1) 小球Pはばねが自然長になった時点でばねから離れた。その理由を運動方程式を用いて説明しなさい。 (2) 小球 P は円筒面内に入り、円筒内面に沿ってB点まで達した。 このときの小球P の速度を求めなさ い。 (3) 円筒面内における小球Pの運動方程式を求めなさい。 (4) 小球Pが(2)に引き続き円筒内面に沿って運動し点Cを越えるために、 ばね係数kが満たすべき条件を (不等式で)求めなさい。 (5) 小球Pは点Dにおいて円筒内面から離れた。 このときのばね定数kを求めなさい。 (6) (5)において、 小球P のその後の運動について式を用いながら説明しなさい。 (7) (6)において、 小球Pが達する最高点のy座標を求めなさい。 (8) AD 間における小球P の加速度の大きさを0の関数として示しなさい。 k P műm Mo m VA A -120° D B C x

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

数学のチャート式の問題です! 自分はこの2つの方程式がどっちも=0だったので2つの式の左辺同士をイコールで結び、共通解をαと置いて計算しました。それが、2枚目の写真のものです。ですが、それだと解答が間違っているようです。 なぜ自分の解答ではダメなのか、なぜチャート式の解... 続きを読む

重要 例題 方程式の共通解 2つの2次方程式 2x2+kx+4=0, x2+x+k = 0 がただ1つの共通の実数 解をもつように, 定数kの値を定め、その共通解を求めよ。 CHART S OLUTION 方程式の解 共通解をメとおくる x=α が解⇔ x=α を代入して方程式が成り立つ もんだいは 2つの方程式の共通解を x=α とすると,それぞれの式にx=α を代入した 2a²+ka+4=0,a2+α+k=0 が成り立つ。これをα, kについての連立方程式 とみて解く。実数解という条件に注意。 解答 共通解を x =α とすると 2a²+ka+4=0 •••••• ・①, a²+a+k=0 ①②×2 から (k-2)α+4-2k=0 すなわち (k-2)a-2(k-2)=0 よって ゆえに [1] k=2 のとき 2つの方程式は, ともに x2+x+2=0 となる。 その判別式をDとすると (k-2)(a-2)=0 k=2 または α=2 D=12-4・1・2=-7 D<0であり,実数解をもたないから, k = 2 は適さない。 [2] α=2 のとき ②から 22+2+k=0 このとき2つの方程式は 2x2-6x+4=0 ゆえに k=-6 ...... (2) 基本 75 ...... ・①', x2+x-6=0 となり,①'の解はx=1, 2 ②' の解はx=2, -3 よって,確かにただ1つの共通解 x=2をもつ。 [1],[2] から k=-6, 共通解はx=2 x=α を代入した ① と ②の連立方程式を解く。 α² の項を消す。 共通の実数解が存在する ための必要条件であるか ら,逆を調べ十分条件で あることを確かめる。 ←ax²+bx+c=0 の判別 式は D=62-4ac 2(x-1)(x-2)=0, (x-2)(x+3)=0 (INFORMATION この例題の場合,連立方程式 ① ② を解くために,次数を下げる方針で α2 の項を消 去したが,この方針がいつも最も有効とは限らない。 下の PRACTICE 79 の場合は,定数項を消去する方針の方が有効である。 PRACTICE... 79 ④ の方程式ター(k-3)x+5k=0,x+(k-2)x-5k=0がただ1つの共通解をもつ ように定数kの値を定め、その共通解を求めよ。 2020vi S

解決済み 回答数: 1
1/4