学年

教科

質問の種類

資格 大学生・専門学校生・社会人

至急教えて欲しいです。独学で簿記しています。 この問題の貸倒引当金と減価償却累計額と繰越利益剰余金がよく分かりません。 教えてください。

解答 貸借対照表 現 金 当座預金 受取手形 ( 35,000) x 2 年 3 月 31 日 ( 16,800) 支払手形 ) 52,100) y? 掛 金 借 入 貸倒引当金 △ 700 ( 売 掛 金( 40,000) 34,300) 未払費用 *1 資本 貨商前建 貸倒引当金 (△ 800)( 39,200) 繰越利益剰余金 2 金用金金 ) ) (単位:円) 17,400) 30,500) 40,000) 1,400) 100,000) 25,000) 品 19,000) 前払費用 300) 物( 80,000) 減価償却累計額 (△ 38,400) ( 41,600) 備 品( 21,000) 減価償却累計額(△ 10,000) ( 11,000) ) 214,300) 214,300) *1 1,200円 〈未払家賃〉 +200円 〈未払利息〉 1,400円 *2 当期純利益は、決算振替仕訳により繰越利益剰余金 (資本)の増加とすることから、繰越利 益剰余金の決算整理後残高に当期純利益を加えた金額を、 貸借対照表の貸方へ記入し、貸借対 照表の貸借合計が一致することを確認します。 繰越利益剰余金 20,000円 〈決算整理後残高〉 +5,000円 〈当期純利益>= 25,000円 損益計算書 ×1年4月1日からx2年3月31日まで 売上原価 給 78,000) 売上高 料 ) (単位:円) 136,200) 27,400) 受取手数料 (1,200) 支払家賃 保 険料 消耗品費 貸倒引当金繰入 14,400) 1,100) 1,600) 800) 減価償却費 ( 6,400) 支払利息 ( 2,500) 雑 損 ( 200) 当期純 (利益) ( 5,000) 137,400) 137,400)

未解決 回答数: 1
数学 大学生・専門学校生・社会人

標本平均についてです。 写真の問題を見たときに、①0か1の2択であること②政党支持率は30%で一定であること③0か1の番号に振り分けることを繰り返すことの3つの条件が揃っていたので、二項分布だと思い、二項分布B(n,0.3)に従うと考えました。 そのため問1の期待値を0.3... 続きを読む

基本 例題164 標本平均の期待値,標準偏差 ある県において, 参議院議員選挙における有権者のA政党支持率は30%である という。この県の有権者の中から,無作為にη人を抽出するとき,k番目に抽出 された人が A 政党支持なら1, 不支持なら0の値を対応させる確率変数を Xんと する。 (1) 標本平均 X= X+X2+・・・・・+Xn について, 期待値E (X) を求めよ。 059 n | (2) 標本平均 X の標準偏差 (X) を 0.02以下にするためには, 抽出される標本 の大きさは、少なくとも何人以上必要であるか。 指針 (1) まず, 母平均 m を求める。 p.636 基本事項 4 4章 21 (2)まず,母標準偏差のを求める。そして, o(X)≦0.02 すなわち 1 小の自然数 n を求める。 0.02 を満たす最 n 解答 (1)母集団における変量は,A 政党支持なら1,不支持なら0 という2つの値をとる。 Xh 1 0 at P 0.3 0.7 1 よって, 母平均は m=1・0.3+0・0.7 = 0.3 (2)母標準偏差は ゆえに EX) =m=0.3 o=√(12・0.3+020.7) -m²=√0.3-0.09 =√0.21 統計的な推測 よって o(X) = √n 0.21 √n 28.18 √0.21 0.21 0.02 とすると,両辺を2乗して ≦0.0004 n n 小数を分数に直して考えて もよい。 (S) T 2100 0.21 0.21 ゆえに NZ = =525 ≦0.02 から 0.0004 4 √n この不等式を満たす最小の自然数n は n=525 √21 したがって、少なくとも525人以上必要である。 1-5 よって1/15 n 25 21

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問題1が解けません途中式含めて教えていただけると助かります

1.2 解の存在と一意性 3 1 1階常微分方程式 本章では微分方程式の中でも最も単純な1階常微分方程式の解き方を学ぶ、単 純とはいっても解がすぐに見つかるとは限らない。 比較的容易に解が得られる微 分方程式にはいくつかのタイプがあるので、それをみてみよう.これらの解法は 2階以上の、より複雑な微分方程式の解法の基礎でもある. §1.1 微分方程式の階数 ェを変数とする未知関数をg(x)として F(x,y,y,y',...) = 0 x, y(x), y(x) = dy dx' d²y y" (x) = dx2, から成る方程式: (1.1) を常微分方程式という. また, 導関数の微分回数を階数といい, 階導関数 y(n) = dmy/dr” が (1.1) の最高階数の導関数のとき, (1.1) をn 階常微分方 程式という. たとえば,x軸上で力f (x) を受けて運動する質量mの質点の時刻での 座標x (t) は, よく知られているように,ニュートンの運動方程式 m = f(x) dt² (1.2) に従う.これは変数がt, 未知関数がェ (t) の2階常微分方程式の例である. 他方,同じ問題を質点がポテンシャルV (x) の中を力学的エネルギーEで 運動しているとしてエネルギー保存則の立場で見ると, d²x + V (x) = E (1.3) と表される.この式に含まれる導関数はdr/dt だけなので,これは1階常 微分方程式である。 [問題1] f(x)=-dV (x)/dr として,上の2式が等価であることを示せ. ヒント:エネルギー保存則によりEは一定であることに注意し、 (1.3) の両辺を で微分してみよ。) 本章では,最も階数の低い1階常微分方程式について学ぶ。 §1.2 解の存在と一意性 微分方程式の解の存在やその一意性などというと大変難しそうに聞こえる が,これから見るように直観的にはそれほど難しいことではない. 1階常微 分方程式のもっとも一般的な形は (1.1)より F(x,y,y)=0 (1.4) と表される. これをの方程式と見なして, それについて解けるときには dy = f(x, y) dr (1.5) と表される.この微分方程式は、 図1.1に示したように,その解y (x) があ ったとして解曲線y= y (x) をry 平面上に描くと, 任意の点(x,y) でのこ の曲線の接線の傾きがf(x,y) であることを意味する. したがって,(1.5) を解いてy(x) を求めるというの は, 曲線y=y(z) 上の点(x,y) で その接線の傾きがちょうどf (x,y) に等しいものを見出すことに相当す る. このことからまた, (1.5) を幾何 学的に解く方法も考えられる. ry 平面上の任意の点(x,y) f (x,y) を計算し,その値を傾きとしてもつ y 0 接線の傾き: f(x,y) 図 1.1 y=y(x)

回答募集中 回答数: 0
1/98