学年

教科

質問の種類

数学 大学生・専門学校生・社会人

どうしてnを無限大にしたときに0になることを証明しているんですか?

f(x)=f(0) + f'(x+ 2! Rn(x) = 1! r(@s+... f(n)(0zzn (001) n! f" (0) x2 +... + 44 マクローリン展開 第2章 微 f(x) が0を含む開区間 I で無限回微分可能(すべ てのnに対してn回微分可能) であるとき, 任意のæ∈I と任意のnEN に対して 2.4 テイラーの定理 45 【解】 (1) を示す. 例18より Rm (z) = 0x n! -T” だから1章例題2より, f(n-1) (0) 0x -x-1 (n-1)! + Rn(x), |Rn(x)|= = n! || xn "ex - n! →0 (n→ ∞) f(x)は をみたす 日=日(π,n) が存在する. ここでもしRn(x)0 (n→∞)なら -> f'(0) f" (0) f(x)=f(0) + -x+ 22 +・・・ + f(n) (0) -xn 1! 2! n! +... と無限級数で表される. 右辺の無限級数を f(x) のマクローリン展開ある はマクローリン級数という(級数については6章を参照のこと)。 は証明を省略する (6章 6.4 節参照). 問21 例20の (2) (3) を示せ. 注eのマクローリン展開 (1) において,π=i0 (iは虚数単位; i = √-1) と おくと, sin π, cosæ のマクローリン展開 (2), (3) から eid=cos0+isin O が得られる.これをオイラー (Euler) の関係式という. となり結論を得る。 (2), (3) も同様に示される。 (4), (5) の証明には、 定理 12 において別の形の剰余項(コーシーの剰余など) をとる必要がある. ここで 例20 T xn (1) ez=1+ + + + n! (-x<x<∞) 問22|x|<1のとき次の級数展開が成り立つことを示せ。 ( 6章定理1参照) I 2.5 2n 1 (2) sin x = + 1 3! ・+ (−1)n-1. 5! +... (2n-1)! log 1+2=2(x+++...) 3 5 (-x<x<∞) x2n + .... + (−1)". [( 2n) ! ·+(-1)n−12 +・・・ (-∞<x<∞) x2 24 (3) cos x = 1- 2! 4! x2 (4)log(1+z)=x_ x3 + 2 3 n 1.3...(2n-3) 2.4... (2n) (−1<x≤1) (5)(一般の2項定理) | ネイピアの数とオイラー は任意の実数とする. +(-1)^- 「対数」という言葉はネイピアが導入した. オ イラーは級数 (1+m) = 1 + - a a(a-1)²+ 1 1 1 2! 1+ + +・・・+ 1! 2! ala-1)...(a− n + 1) (Iml<1) を考え、その和をeで表した.また,その数値を計算し,eを底とする対 問23|x|<1のとき次の級数展開が成り立つことを示せ. 1 (1) (1+m)2 = 1-2x+3x² -.... .+ (−1)"(n+1)x" +... (2) V1 +æ=1+zx- 1 1 2 x² 2.4 2 1.3 + 2.4.6 2.3

解決済み 回答数: 1
公務員試験 大学生・専門学校生・社会人

この問題の解説にある、 AはBの出発15分前に出発し、BはCの出発7分後に出発したことから、AはCの出発8分前に出発したことがわかる。 この文章なんですけど、どういう風に考えたらAはCの出発8分前に出発したことが分かるんですか? どれだけ解説を読んでも、頭がこんがら... 続きを読む

SECTI 第1章 ●ECTION 数的推理 11 0 速さ 実践問題 74 基本レベル 頻出度 地上★★★ 国家一般職★ 国税・財務・労基★ 国家総合職 ★★ 東京都 ★ 特別区★★★ 国家総合職(教養区分)★ 裁判所職員★★ 問 A, B, Cの3人が同じ場所から同じ道を通って同じ目的地へ徒歩で向かった。 Aは, Bの出発15分前に出発し, Cの到着4分後に到着した。Bは、Cの出発 7分後に出発し, Aの到着11分後に到着した。 A, B, Cはそれぞれ一定の速 さで移動し,Bは分速60m,Cは分速70mだったとすると、Aの速さは か。 1: 分速48m 2:分速50m 3: 分速52m 4: 分速54m 5: 分速56m (国家一般職2024) とこは初めてずれった。 それぞれ1回返した後、甲と乙が再び 通ってから63秒であった。 いのはどれか。 図(地上2010) 実践 ◆問題74 の解説 PUT チェック 1回目 2回目3回目 <速さ > AはBの出発15分前に出発し, BはCの出発 7分後に出発したことから,AはC の出発 8分前に出発したことがわかる。また, BはAの到着11分後に到着したこと およびAはCの到着4分後に到着したことから,Aが移動に要した時間をα (分) と すると、中 Bの所要時間: α-15+11=α - 4 ( 分) Cの所要時間: α- 8-4 α-12 (分) 30 第1章 数的推理 ここで,同じ距離を移動する場合, 所要時間の比は速さの逆比に一致することか ら,BとCの所要時間と速さに着目して,次の式を得る。 (a-4): (a-12) = 7:6 としく、さらにこのα=60(分) 次に,Aの速さをx (m/分) として, AとBの所要時間と速さに着目すると、 a: (a-4)=60: x 60:56=60x CHROMA PASOS を満たす。 x=56(m/分) となり,Aの速さは分速56mであることがわかる。 よって, 正解は肢5である。 となりを代入 ()+()=x+x 40x-400 (e/m)= たすため、 よって、正解は 10(分)と 2である。 (コメント) 本間でわれているの 8:1 01:S

未解決 回答数: 2
数学 大学生・専門学校生・社会人

(2)の解答のところで ①と書いてるとこ見て欲しいのですが、(1)より〜であるから のあとの式が理解できません。どうやってこうなったのか分からないので教えて欲しいです。

E: 24 第1章 実数と数列 13 単調数列とコーシー列 基本 例題 019 有界で単調減少する数列の極限 基本 例題 次の条件で定められる数列{an} について、以下のことを示せ。 >2として, a a1=2, an+1= = (a 2 - (n=1,2, 3, ......) この数列は正 (1) すべてのnについて 2 (3) 数列{an} は√2 に収束する。 (2) 数列{az} は単調に減少する。 指針 数列{an 数列{α 1つである。 指針 この漸化式はニュートン法(p.96 参照) によって構成され,近似値 2 束する (1)帰納的にan>0であるから,相加平均≧相乗平均の関係を利用する。 (3) はさみうちの原理を利用して, lim|an-√21=0 を示す。 72-00 2を与える計算 定理 収 解答 α>2 an+1= 解答(1)α=2>0であり、漸化式の形から,すべての自然数nについてan>0である。 よって, 相加平均と相乗平均の関係から、任意の自然数nについて 以下 よ an+ an +2)=1.2√a. 2-√2 br ano an =2√2 であるから、すべてのnについて (2) 任意の自然数nについて an+1-an= - ½ (an+2)-an-³ 2-an² 2am 2-an 2≤0 (1)より、≧2であるから ゆえに an+1-an≤0 よって, an+1≦an であるから, 数列{an} は単調に減少する。 (3) 与えられた漸化式により an+12 an2-2√/2an+2 2an (an-√2) 2 2an an-√2 (an-√√2) 参 2an (1)より,0≦- an-√√2 2an an 1 であるから 2an 2 よって anti-√2 (an-√2) S 0san-√2(1)(a-√2) lim (12) (a-√2)=0であるから 8218 liman=√2 818

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

増減表についてです。 赤枠で囲んだ部分のプラスマイナスを判定する良い方法を教えていただきたいです。 できれば簡単な方法でお願いします🤲

2 第1章 1変数の微分積分 例題1 (関数のグラフ, 数列) x を非負の実数,r0r<1 を満たす実数とし, 関数f(x) を f(x)=xr* と定義する。 このとき、 以下の問いに答えよ。 df (1) f(x) の導関数 および第2次導関数 dx d2f dx2 を求めよ。 (2) f(x)の増減表を書き、関数y=f(x)のグラフの概形を描け。 (3) n を正の整数とし, 数列 {a} の一般項を an=f(n-1) により定義 する。このとき,初項から第n項までの和を求めよ。 <東北大学工学部〉 ◆アドバイス! (ax)' = a *loga 証明は簡単! 解答 (1) f(x)=xr* より f'(x)=1·r*+x.r*logr= (xlogr+1)r* ・〔答〕 公式: また f" (x) = logror*+(x logr+1)*logr = logr(xlogr+2)r* ・〔答〕 (2) f'(x) = (xlogr+1)*= 0 とすると 1 x= (>0) logr f" (x) = logr(xlogr+2)*=0 とすると x=- 2 logr (> logr よって, 増減および凹凸は次のようになる。 x f'(x) f" (x) 1 2 (+8) logr logr + 0 - 0 + y=α とおくと logy = loga =x loga 両辺を微分すると y y'=loga ..y'=aloga f" (x) 凹凸: f" (x) ・f'(x) の変化 f" (x) > 0 接線の傾き ⇒接線の傾きが増加 グラフは下に凸 y=f(x) したがって (3) an= k=1 この S= SS rs= 2 f(x) 0 rlogr logr 2 2r logr logr (0)

解決済み 回答数: 2
1/6