学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(2)の考え方を教えていただきたいです。 内積0を使うのかな?という検討はつきましたが、条件で与えられているベクトルをどのように扱えばいいか分からなくなってしまいました。

第1問 R3を3次元実列ベクトル全体の集合, I 3×3 を3×3 の実行列全体の集合とする. 1, 12, 73 ∈ R3は一次独立な単位長ベクトル, 4∈R3は n1, 2, ng と平行でない単位長ベクトルとす る.また,正方行列 A, B を 4 A= - 2 B = Σnin T \\n-n i=1 とする.ここで, XT, æT はそれぞれ行列 Xの転置行列とベクトルæの転置ベクトルを表 す。 以下の問いに答えよ。 (1)Aの階数が3となるような 4 に関する条件を求めよ. (2) 3次元ユークリッド空間において以下の3つの条件を満たす4つの平面 II = {æ ∈ R3 | new - d = 0} (d は実数, i = 1, 2, 3, 4) を考える (i) A の階数は3であ る, (ii) Ω = {æ ∈R3 | new-d≥0, i = 1, 2, 3, 4} が空集合ではない, (iii) II (i = 1, 2, 3, 4)に接する球C (⊂ Ω) が存在する. このときCの中心の位置ベクト ルをベクトルuER を用いて A-1u の形で表す. d (i = 1, 2, 3, 4)を用いてuを 表せ. (3) B が正定値対称行列であることを示せ. (4)4つの平面 {æ∈R3|nex-d=0} (dは実数, i = 1, 2, 3, 4) への距離の2乗和が 最小となる点P を考える. Pの位置ベクトルをベクトルver を用いて B-1 の形 で表す. ni, di (i = 1, 2, 3, 4) を用いて”を表せ. (5)13において点 Qi (位置ベクトルをER3とする)を通りに平行な直線をんとす る(i = 1, 2, 3). 任意の点R (位置ベクトルをy∈ とする) をんに直交射影した 点を R; とする.R の位置ベクトルを行列 Wi∈ R 3×3 を用いて y - Wi(y-æž) と表 す. I∈IR 3×3 を単位行列とする. (a) と I を用いて W を表せ. (b) WWWż を示せ. = (c)平面Σ = {ER3 | afx = b} を考える (a∈3は非零ベクトル, b は実数). 点SE∑はL, Iz, 13 への距離の2乗和を最小にする点である.n1, n2, n3 が互 いに直交するとき,Sの位置ベクトルをベクトルw∈3 を用いて aa ab I - w+ T ara の形で表す.ただし, は a,bには依存しないものとする. w を Wi, πi (i = 1, 2, 3) を用いて表せ. p. 1

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

解ける人解いて教えてもらえたりしませんか?😭 解き方を知りたいです。

[5] 行列 A = の固有値と固有ベクトルを求める。 すなわち, Aæ= 入z を満たす実数 入と, 入に対応するべ クトルæ≠0を求める. Ax = 入 は 50 = [57] と変形される. 仮定よりæ≠0 であるので, [56] の逆行列は [58] が導かれるからである。従って, [56] の [60] は [61] であるこ 0 [[90]] 8 [63] [64] = 0 が得られる. これを解いて,固有値入= [65] 10 2 なら, とがわかる. [56] の逆行列が [59] ならばæ www これより、 固有方程式 入 + [62]入一 を得る. 3 4 [56] [57] 選択肢 0 (A-X) 1 (A - λx) ⑤0 (※スカラーの零) ⑥6 0 (※ ベクトル) 存在する [58] |~ [61] 選択肢 (同じ番号を繰り返し用いて良い) ⑩ 行列式 ① 対称行列 ② 逆行列 ⑥⑥ 存在しない 77零 以下, 求める固有ベクトルをæ= ⑩ ●入= [65] のとき, Aæ= 入æは唯一つの方程式æ1+ |[67] [68] (2) ● 入 = - [66] のとき,同様にして, 固有ベクトルæ= ち [69] 選択肢 次のページへ続く. (A – AI) ⑦○ 21 とおく. X2 ① 100000 に対する固有ベクトルはæ= 169 (これを」 とおく) である. [68] [67] [67] [68] ② (3) X [67] ③ 直交行列 ⑧ 零ベクトル 1 [70] [71]| -3 A [68] 3 32=0 と同値となる。 従って, 固有値入 = [65] 2 4 x (9) I ④ 転置行列 ⑨ 零行列 ③ (これを2 とおく) を得る. [66] 5 [68] |[67]

未解決 回答数: 0
1/2