学年

教科

質問の種類

数学 大学生・専門学校生・社会人

有識者の方解説お願いしたいです。

曲面のパラメータ表示 p:U→ R° (p e C®(U)を与え,座標曲面 S= 9(U) を考える.また,曲線c= c(s) :I→ U (ce C®(I)) を考え, 7(5):= (poc)(s) : I→Sを測地線とする.このとき次の問に答えよ。 (1) (s) の速度ベクトルの大きさ |会(s)|| は, dy = Const for Vt E I ds を満たすことを示せ、ここで,const とは定数 (constant) の略記号のことで ある。 注:したがって,パラメータ sは, yの弧長パラメータの定数倍となる。 (2) パラメータ変換s= {(t) (t e Ii) を行うと,曲線(t) := (E(t)) は,あ る関数 p(t) e Co (ī) が存在して, ds (()) = p()() for tei T dy dt を満たすことを示せ、ここで(…)" は,(…)のS-接成分を表す。これを座 標曲面Sのパラメータ表示を用いた方程式で表すと, dck ( (%3D 1,2) for teI dPck dc dei -(t) =D p(t). dt? dt dt dt を満たすことと同値である.(式(1.1), (1.2) のどちらを示してもよい.) 注:測地線y=(s) は, 弧長パラメータの定数倍を用いて求められるが,上 記の(1)より,式(1.1) または式(1.2) を測地線の定義としてもよいことが分 かる。ただしこの場合,(t) のパラメータtは,もはや一般に弧長パラメー タの定数倍としては与えられない.また式 (1.1) は,「測地線とは,座標曲面 S上の加速度が速度に各点で比例している曲線」とも解釈出来ることを表し ている。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

3枚目の(1.2.7)や(1.2.8)はどのように出てくるのでしょうか?

ホロノーム系と非ホロノーム系 拘束条件は一般に微分形で与えられる。 力学変数をa' (i=1~N) とすると, 拘束 条件は次のように表される: W。= Qai(z, t)de'+ ba(2,t)dt =D 0, (a=1~b) ここでaは拘束条件の番号を表す添字で, kは拘束条件の数である。aai と bail と時間tの関数で, aai(z,t) は aai(2', 2?, … … aN,t) の略記である. また同一項 で上付き添字と下付添字の現れる場合はその添字について和を取るものとする (和) 号とを省略).したがって, 上式ではiについて1から Nまでの和を取る。 Weのうちで独立でないものは落とし, Waはすべて独立とする.これら w。のうち で積分可能なものがあれば, その拘束条件を積分形で表す方が便利なことが多いそ こで,積分可能なものは積分し 9u(z,t) = Cu, (μ=1~m) と表そう.Cu は積分定数であり, m は積分可能な拘束条件の数である。積分可能で ない残りの拘束条件は W。 = aoi(x,t)de" + b。(x,t)dt' = 0 (0=1~k-m) となる。この場合, 力学系の拘束条件は (1.2.2) と (1.2.3) で与えられることになり, 自由度は N-kである. 3次元空間の中の n質点系の場合は,当然 3n-kとなる。 すべての拘束条件 (1.2.1) がすべて積分可能な場合,つまりk=mのとき, この糸 をホロノーム系 (holonomic system) といい, 積分不可能な拘束条件のある場合を非 ホロノーム系という。 ホロノーム系の簡単な例は, 1質点が2次元曲面上に束縛されている場合である。 例題1.1. 曲面上の運動 曲面への法線成分を n; とすると, 質点の運動は法線に垂直であるから, 拘束条件は w= n;da° = 0

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

線形写像の核空間がよくわかりません。 要素が多項式の空間の核空間の要素も多項式のはずですが、この問題の三番目の解答はベクトルです。なんでですか? よろしくお願いします。

722 第4章 線形写像 ェーー 過去問研究4一4 (線形写像の表現行列③) 3 次の実係数多項式の全体 = {2g十6x十cy?十のxy? 2, 5 c, @三玲) は (1 x。*5 2引 を基底とする 4次元実ベクトル空間である。 線形写像 了: アーを のの @の フー6か ?ヵビア によ 隊 BITの半仙いE和えま。 (1) の基底 1, *。*?,。 9 に関する了の表現行列, すなわち び①, 7の, 7eの, 7の9) xy 294 を満たす 4X4 行列4 を求めよ。 (2) rankげを求めよ。 (3) Ker7 を求めよ。 <鹿児島大学〉 のニー [青 説] 線形写像の表現行列を考える場合. できるだけ簡単な基底を選んでお くことが望ましい。 本間の基底 (1, *, z?。 99 は理想的なものである。 線形 写像げの階数 rank/ とは表現行列の階数と定義する。 (1) 71)=6, 7()=0一2x・1十6・x三4, 7の=ニ2一2x・2x十6・y?王2x?十2, 7(xうー6x一2x・8z?十6・x*三6x より 0 6 びQ① 7の) 7の 7の0の)=dG * タタ 0 0 ららのつら 2 0 2 0 列4 コマ5キマ したがって, の基底 (1, x, *%, 9 に関するの表現行 FPP〔答〕 6 0 2 0 0 4 0 6 4ー 合 0 0 2 0 0 0 0 0 6 [0 ⑫ 4=| 。 0 ららょのら つら ら ! ! ら のら eleo ら 0 6 0 0 より, rankげ=rank4=テ3 ……(答)

解決済み 回答数: 1
1/2