学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(2)の解答のところで ①と書いてるとこ見て欲しいのですが、(1)より〜であるから のあとの式が理解できません。どうやってこうなったのか分からないので教えて欲しいです。

E: 24 第1章 実数と数列 13 単調数列とコーシー列 基本 例題 019 有界で単調減少する数列の極限 基本 例題 次の条件で定められる数列{an} について、以下のことを示せ。 >2として, a a1=2, an+1= = (a 2 - (n=1,2, 3, ......) この数列は正 (1) すべてのnについて 2 (3) 数列{an} は√2 に収束する。 (2) 数列{az} は単調に減少する。 指針 数列{an 数列{α 1つである。 指針 この漸化式はニュートン法(p.96 参照) によって構成され,近似値 2 束する (1)帰納的にan>0であるから,相加平均≧相乗平均の関係を利用する。 (3) はさみうちの原理を利用して, lim|an-√21=0 を示す。 72-00 2を与える計算 定理 収 解答 α>2 an+1= 解答(1)α=2>0であり、漸化式の形から,すべての自然数nについてan>0である。 よって, 相加平均と相乗平均の関係から、任意の自然数nについて 以下 よ an+ an +2)=1.2√a. 2-√2 br ano an =2√2 であるから、すべてのnについて (2) 任意の自然数nについて an+1-an= - ½ (an+2)-an-³ 2-an² 2am 2-an 2≤0 (1)より、≧2であるから ゆえに an+1-an≤0 よって, an+1≦an であるから, 数列{an} は単調に減少する。 (3) 与えられた漸化式により an+12 an2-2√/2an+2 2an (an-√2) 2 2an an-√2 (an-√√2) 参 2an (1)より,0≦- an-√√2 2an an 1 であるから 2an 2 よって anti-√2 (an-√2) S 0san-√2(1)(a-√2) lim (12) (a-√2)=0であるから 8218 liman=√2 818

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

青のところまでは分かるのですが、その後のAの指数m-1とa1 (この1ってところが分からない)の関係性を教えて欲しいです。スタートがAmではなくてAm-1だったらm-1の時にa0が対応するのは分かるのですが、その理由がわかりません。

① このファイルにはアクセス許可が制限されています。 部の機能にアクセスできない可能性があります。 - アクセス許可の表示 × m を0以上の整数とする。 10m 秒の時点で A,Bを訪れているユーザー数を am人, bm人 とする。そうすると調査結果から, 時刻に伴って変化する数列{am}と{bm}ができて,a=100, bo = 200および, Jam+1=0.9am+0.26m lbm+1=0.1am+0.8bm を満たす。これは一種の漸化式であるが, 2つの数列をまたがって表現されたもので 連立 漸化式といわれる。 その形は連立1次方程式と似ている。 そのため行列を用いて, (am+1) = (0.9 0:2) (bm) 0.2/am 0.8 0.9 0.2\ と表せる。ここで, A= 0.1 とおくと, 10m 秒後の人数の分布は, 0.8. ram² am-2 = A =A A =A2 (am-2) m m-1 かる! ao Am (61) = Am (60) = 4 (200) " で計算することができる。 最後の式には, Am乗が登場している。そこで続いて, 行列のべき 乗を考えてみよう。 bm-21 \bm-2 = Am-1 == 注意.上の行列4は行ベクトルの和が, (0.9 8,2) (0.1 0.8) 15 13 と、すべての成分が1の行ベクトルになる。このような、行ベクトルの和が1だけの行ベク トルとなる行列を確率行列という。確率行列は、分布状態の変化を表すときなどに現れる重 要な行列である。 2.2.2 行列のべき乗 すでに私たちは、 対角行列のべき乗が簡単に求められることを25ページで学んでいるの で,この考え方をもとに行列のべき乗を求めることを考える。 O Mi +

解決済み 回答数: 1
1/6