学年

教科

質問の種類

数学 大学生・専門学校生・社会人

3)を解いてみたのですが計算方法が合ってるか分かりません。 おそらく与式は2枚目のようになると思います。 2)の解答に自信はないですが以下の通りです。 A1=0,A2=1/2,B1=1/2,B2=1,C1(u)=u, C2(u)=1-u また、2)についてもし間違いがあれば... 続きを読む

S1. n を自然数x,yを実変数として,以下の設問に答えよ. 1) 式 (S1.1) を用いて, 式 (S1.2) の広義積分Iを無限級数で表すことを考える. この無限級数の第n項 αm を求めよ. -* (|| < 1) (S1.1) n=0 1 = = L L 1 1 dady=Σa (S1.2) 10 - xy n=1 2) 式 (S12)のIを(x,y)= (u-vu+g) で変数変換をしたうえで, 式 (S1.3) の ようにL, I2に分解する. ただし, 式 (S1.3) は式 (S14), S1.5), (S1.6) を満 たす.このとき,下式の A1, B1, Ci (u), A2, B2, C2(u), Dにあてはまる定数ま たは関数をそれぞれ答えよ. ただし, A1 A2 とする. I=h+I2 (S1.3) ・Bi ·C₁(u) = - AL B2 g(u, v)dv du (S1.4) 0 C2 (1) = g(u, v)dv du tv) du (S1.5) (S1.6) I2 g(u,v) = 0 D 1-2 +02 3)問2) のの値を求めよ. 必要ならば, 式 (S1.7), (S1.8) を用いてよい。 d = dx 1 (arctanz) (S1.7) 1+α2 1 (|x| < 1) (S1.8) 1-2-0-8(1+3) (1-22) (1 4)問2)の12の値を求めよ. 必要ならば, 式 (S1.7), (S1.8), (S1.9) を用いて よい. 1- cos x tan sin a 2-2 I (sinz≠0) 5) 式 (S1.2) の無限級数の和を求めよ. (S1.9)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(3)の式の意味がわかりません。 教えてください。

(2) 4STEP 数学Ⅲ 170 第6章 微分法と積分法 109 面積(M) 精講 ….……..① を考える。 放物線y=az-12a+2 (0<a</2/2) (1) 放物線 ① がαの値にかかわらず通る定点を求めよ. (2) 放物線 ① と円 '+y2=16・・・・・ ② の交点のy座標を求めよ. a=-のとき, 放物線 ① と円 ② で囲まれる部分のうち, 放物 線の上側にある部分の面積Sを求めよ. (1) 定数αを含んだ方程式の表す曲線が,αの値にかかわらず通る 定点を求めるときは,式を α について整理して, a についての恒 等式と考えます (37) (1)y=ax²-12a +2 より 20156 (2) 2つの曲線の交点ですから連立方程式の解を求めますが, y を消去すると zの4次方程式になるので,座標が必要でも,まずェを消去してyの2次 方程式にして解きます. (3) 面積を求めるとき,境界線に円弧が含まれていると,扇形の面積を求める ことになるので,中心角を求めなければなりません.だから,中心〇と接点 を結んだ線を引く必要があります。もちろん, 境界線に放物線が含まれるの で, 定積分も必要になります. 解 答 a(x²-12)-(y-2)=0 これが任意のαについて成りたつので [x2-12=0 ly-2=0 よって,①がαの値にかかわらず通る定点は (±2√3.2) [y=a.r²-12a+2① | x² + y²=16 **** x=±2√/3,y=2 数研出 <a について整理 (3) N

解決済み 回答数: 1
1/7