学年

教科

質問の種類

物理 大学生・専門学校生・社会人

量子力学の教科書で「非相対論的な計算では付加定数を適当に取るのでε=hνから求めたνの値にはあまり意味がない」とはどう言う意味ですか? この教科書ではεをエネルギー、hをプランク定数、νを振動数としています。

12 p=√2meV となり (1) の第2式から陰極線の波 長入は 1 量子力学の誕生 h h Þ √2me V と計算されることがわかる. me に数値を代入すれば, i= 入= 150 A (1Å=10-10m) V 14 1-8図 Si 単結晶 (111) 表面の低速電子 線回折写真(入射エネルギー 43eV) ( 村田好正氏 (東京大学名誉教授) によ る) となる. V~100Vの程度では陰極線 の波長は1Åの程度になる. この程度の波長の彼ならば, X線と 同様に, 結晶内に規則正しく並んだ原 子によって回折現象を起こすはずである. 事実 , アメリカのデヴィッスンと ガーマーはニッケルの単結晶で電子線を反射させ,X線のときと同様な干渉 図形を得た (1927年). また, わが国の菊池正士は薄い雲母膜で, イギリスの トムソンは薄い金属膜で,電子線の回折像を得て,ド・ブロイの予言の正し いことを実験的に立証した. ド・ブロイの原論文では,相対論的考察が用いられているが,p=h/入は 以下の非相対論的な議論でもそのまま使われるエネルギーの方は,普通の 非相対論的な計算では付加定数を適当にとるので,ε= hv から求めたの値 そのものにはあまり意味がない. しかし、 実際に測定値と比較されるのはい つもショー vmという差の形になるので、不定の付加定数を気にする必要はない. §1.4 波動力学の形成 よく知られているように張られた弦や膜とか管内の空気の振動のように 有限の範囲内に局在する波は定常波 (固有振動) をつくり, そのときの振動 数 5

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

分からない問題が多いので解説お願いします 明日テストなので早めに教えていただけると助かりますm(_ _)m

(1) 静止している人の正面前方から,960Hzの振動数のサイレンを鳴らす緊急自動車が20m/s の速さで近づいてきている。 静止している人に聞こえるサイレンの音の波長入 [m] と振動数 f [Hz] をそれぞれ求めなさい。 ただし, 音速は340m/s とする。 5. (2) 長さ0.15mの閉管の管楽器に生じる基本振動の波長[m] を求めなさい。 また,節と腹の場 所がわかるように、 右下図に基本振動の定常波を描きなさい。 (3) 音圧レベルが55dBの音の強さ 155 と, 35dBの音の強さ135の比 4. 運動エネルギーの次元を次元式の表記 [MLTY] により答えなさい。 a fi B=2 r = -2 (MaLp Th) CM'L² 7-2 光に関する以下の各問いに答えなさい。 Iss 135 閉管の管楽器 を求めなさい。 (1) 空気中において, 屈折率 n =√3のガラス面に光が入射角 60° で進んだ場合の屈折角 [°]を求めなさい。 また, ガラス中の光の速さ v[m/s] を求めなさい。 ただし、空気中 の光速は, 真空中と同じであるとして答えなさい。 ⑨:30°V=2.0x108 m/s (2) 屈折率 n = 1.5の液体の液面から 30cmに沈んでいる物体は,見かけ上では,液面から何 cmの深さに見えるのかを答えなさい。 (3) 可視光線よりも波長が短く振動数が大きな光の名称を答えなさい。 紫外線 (4) ある透明な液体の臨界角が45°であった。 この透明な液体の屈折率 n を求めなさい。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

習っていないところが多くて分からないので解説お願いします🙇‍♂️

(1) 静止している人の正面前方から,960Hzの振動数のサイレンを鳴らす緊急自動車が20m/s の速さで近づいてきている。 静止している人に聞こえるサイレンの音の波長[m]と振動数 f [Hz] をそれぞれ求めなさい。 ただし, 音速は340m/s とする。 5. (2) 長さ0.15mの閉管の管楽器に生じる基本振動の波長 入 [m] を求めなさい。 また, 節と腹の場 所がわかるように、 右下図に基本振動の定常波を描きなさい。 155 (3) 音圧レベルが55dBの音の強さ 155 と, 35dBの音の強さ 135の比 135 4. 運動エネルギーの次元を次元式の表記 [MLTY] により答えなさい。 (Ma LE Tr) a ²1 B=2 CML ²7-² r=-2 光に関する以下の各問いに答えなさい。 閉管の管楽器 を求めなさい。 (1) 空気中において,屈折率 n = √3 のガラス面に光が入射角 60° で進んだ場合の屈折角 [°] を求めなさい。 また, ガラス中の光の速さ [m/s] を求めなさい。 ただし, 空気中 の光速は、真空中と同じであるとして答えなさい。 ⑨:30°V=2.0x10°m/s (2) 屈折率 n = 1.5 の液体の液面から30cmに沈んでいる物体は, 見かけ上では, 液面から何 cmの深さに見えるのかを答えなさい。 (3) 可視光線よりも波長が短く振動数が大きな光の名称を答えなさい。 紫外線 (4) ある透明な液体の臨界角が45° であった。 この透明な液体の屈折率 n を求めなさい。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

弦の定常波の振動数の測定の範囲です。 予習問題の(2)の問題a b cが分かりません!答えを教えてください!!!!!!よろしくお願いいたします!!!!!!

が得られる。 式と呼んでいる。 刀性 数の測定 振動させると図のような定常波ができた。 弦の 線密度を9.80×10-4 kg/m, 重力カ加速度を9.80 m/s? として問に答えよ。 221 いま。 +x方向に進む波として正弦波関数 y(x, t) = A sin (wt-kx) (16) を仮定すると, y(x, ) dr? 弦を伝わる波の波長入 [m] はいくらか. 弦を伝わる波の速さ [m/s] はいくらか. 音叉の振動数f[Hz] はいくらか. 2- = ーk°y(x, t) = -k?A sin (wt-kx) 実験 (17) 1. 実験装置および器具 弦定常波実験器,発振器, 電子天秤, 周波数 シンセサイザー, 弦(糸), おも り (5g, 5 個),物差し y(x, t) - -w°A sin (wt-kx) or2 = -0°y(x, t) (18) となり、これらを(15) 式にあてはめると 2 k? (19) 2. 実験方法 2.1 糸の線密度の測定 の が得られる。(19) 式を変形すると横波の速さ として (1) 糸を1.2m位切り取り, その長さLを の T 測定する。 (2) 切り取った糸の質量 mを電子天秤で測 定する。 (3) 糸の線密度のを求める. 線密度はσ= 0= k (20) V 0 が得られる。 さらに,一x方向に進む波として次式 y(x, t) = A sin (wt+kx) を考えても全く同じ結果が得られる. なお,(16)式と(21)式に適当な係数を掛け て加えた式もまた,波動方程式の解(一般解) になることをつけ加えておく. (21) m/Lで得られる。 2.2 おもりの質量の測定 5個のおもりに番号をつけ, それぞれのおも りの質量Mを測る。 2.3 定常波の波長の測定 (1) 図7のように, 弦定常波実験器と発振器 予習問題 (1)定常波について簡単に説明せよ。 図のように弦の一端を音又に取り付け, 他 端に滑車を介しておもりを下げる.この音叉を を配置する。 (2) 発振器の外部入力端子と周波数シンセサ イザーの出力端子が接続されている場合に は,その接続を外す。 (3) ビボット滑車をできるだけ振動子から遠 0.75 m 0.012 m ざけて固定する。 (4)糸の一端を弦固定柱に固定し, 次に, 他 端を振動子の穴に通し, おもりを1個つけ, 糸を滑車にかける. (5) 出力調整つまみを反時計方向 (左回り) に回しきる。 (6)周波数調整つまみを矢印に合わせる。 (7) スイッチを入れ, 出力調整つまみを右に 音叉 →x[m] 0.75 0 おもり 質量 1.00 kg (14)式の説明,xが微小変化したときの関数f(x) の変化分の公式として f(x+dx)-f(x) = f (x) dr が知られている。この式のf(x) として (x p 応させると(14)式が得られる。 を対

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

新高2です。図aから図bへの書き換え方がわかりません。どなたか教えていただきたいです!

必闘79.〈音波の性質) 図1上図のように原点Oにスピーカーを置き, 一定の振幅で、 一定の振動数fの音波をx軸の正の向きに連続的に発生させる。 空気の圧力変化に反応する小さなマイクロホンを複数用いて, x 軸上(x>0) の各点で圧力pの時間変化を測定する。 ある時刻において, x軸上(x>0) の点P付近の空気の圧力か をxの関数として調べたところ, 図1下図のグラフのようになっ た。ここで距離 OP は音波の波長よりも十分長く,また音波が存 在しないときの大気の圧力を poとする。 圧力かが最大値をとる x=Xo から,次に最大値をとる x=xs までのxの区間を8等分 し、, 2,…, Xxと順にx座標を定める。 (1) x」からx。 までの各位置の中で, x軸の正の向きに空気が最も大きく変位している位置, およびx軸の正の向きに空気が最も速く動いている位置はそれぞれどれか。 次に点Pで空気の圧力pの時間変化を調べたところ, 図2のグ ラフのようになった。圧力かが最大値をとる時刻 t=Do から, 次に最大値をとる時刻 t3Dts までの1周期を8等分し,丸, ね, ……, pols ちと順に時刻を定める。 (2) ちからなまでの各時刻の中で, x軸の正の向きに空気が最も 大きく変位しているのはどの時刻か。 図3のように、原点0から見て点Pより遠い側の位置に, x軸 に対して垂直に反射板を置くと, 圧力が時間とともに変わらず常 年 に加となる点がx軸上に等間隔に並んだ。 (3) これらの隣接する点の間隔 dはいくらか。 なお, 音波の速さ スピーカー p pos X34 X5 X7 X8 %6 点P付近の拡大図 図1 ts t ts toち Ttsty ts t 図2 反射板 図3 をcとする。 (4)(3)の状態から気温が上昇したところ, (3)で求めたdは増加した。その理由を説明せよ。 [12 東京工大)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

新高2です。⑸から⑺の問題がわかりません。教えていただきたいです!

o77. (平面波の反射·屈折 干渉) 段差と壁面をもつ大きな水槽に水が入っている。この水 捕では、図上部の断面図で示したように, 壁面からの距離 水面 がL以上である領域Aでは水深が2んであり, 距離がLよ り小さい領域Bでは水深がんである。 図下部は, この水槽 を真上から見た図であるが,図の破線で示したように, こ の水深が変わる境界面は, 壁面と平行である。領域Aから, 境界面に向かって速さ り, 波長入の平面彼が入射し, 境界 面で屈折され,さらにこの屈折波が壁面に向かう。 ただし, 波の振幅はんに比べて十分に小さいとする。 図下部の斜め の実線は,入射波における波の山の波面を表しているが, この波面と境界面のなす角は45° であった。なお, 領域Bでの屈折波の波面や壁面で反射さ れた反射波の波面は問題の都合上かいていない。境界面での反射は無視でき, 波の速さは, 水深の平方根に比例するとして, 次の問いに答えよ。 (1) 領域Aでの波の周期Tを求めよ。 (2) 領域Bでの波の速さ が'をひを用いて表せ。 (3) 領域Aに対する領域Bの屈折率nを求め,領域Bでの波面と境界面のなす角度『を求め 境界面 壁面 2h hl 断面図 入射波の波面 真上から 見た図 L- 領域A 領域B よ。 (4) 領域Bでの波の周期 T' と波長/を求めよ。 境界面で屈折された波は, さらに進行し壁面で反射された。ただし, 壁面での反射は自由 端反射であるものとする。 屈折波とこの反射された波が干渉し, 定在波(定常波)が観測さ れた。定在波を観測したところ, 境界面と平行に線状に節が観測されたが, ちょうど境界面 上にも節が観測された。 また, 領域Bには, 境界面での節以外に6本の節の線が現れた。 (5) 壁面において, 壁面と平行に進む波が観測された。この波の波長入。と速さ。を求めよ。 (6)境界面での節が, 壁面から数えて7番目の節であるという事実を使って, Lを入で表せ。 (7) 反射波が境界面を通過して, 領域Aにも定在波ができた。 領域Bの場合と同様に, 定在波 の節が境界面と平行な複数の線を形成する。 この場合の隣りあう線の間の距離dを入で表 せ。 (19 埼玉大)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

277(5)キです。 黄色の下線のところが分からないです。

の向きに進んでるs ー Q) 4三0 のとき, 変位が ッニ0 で, >軸の負の向きに振動しょうとしている点を原点 (0) として, 各点の変位のようすをグラフに表せ。 ー(⑫) /デ1.50 s のときの, 各点の変位のようすを(1)のグラフに重ね, 破線で表せ。 ノン (3) *三0 の点の時刻 7【s] における姿位 ym] を表す式をつくれ。 ピノ ⑲⑳ 任意の点々(Um) の, 時刻 7【s] における変位 ym〕 を表す式をつくれ。 『例題55 良司 277. 正弦波の式と定在波 (定常波)人@ 図におい 》1 て, 原点0 の媒質は変位 ッー4sin 人 で表され ーー る単振動をし。 その振動がャ軸の正の向きに伝わっ 4 守 | ていく涼(平面波)を考える。4 〔m〕 は振幅, 7〔s〕 は周期, 7【s〕 は時間である。この平面波は距離[m〕 の所で, 同位相で反射する。 平 面渋は媒質中を速度 ヵ[m/s] で減衰せずに伝わり, また反射による減衰はないものとす る。次の問いの 内に適当な式または数値を入れよ。 2 sino+sin8ニ2sinそさとcos が を用いてもよい。 (1) この平面波の波長4〔m] は7とゥにより [| 7で |と表せる。 (2⑫) 原点0 を発した平面波は原点Oより距離x[m〕 (0<xくア) 離れた点P に遅れて到達 する。 平面波の速度はのゅであるから, 遅れの時間は? とzより[ |と表せる。 し たがって, 点Pでの変位 ヵ〔m〕 は =[ ウ | と表せる。 (3) 原点0から距離んの所で反射して点Pに達した平面波 (反射波)はさらに遅れる。遅 れの時間は/, のと*より[エ |と表せる。 反射波は同位相で反射する と仮定して いるので, 点Pでの変位 y [m〕 は =| オ | と表せる。 (4) 点P の変位 x [m〕 は原点から直接到達 した平面波の変位 y』 と反射濾の変位 yy の和 で求められる。 を積の形に書き直すと %三| カ となる。 @) (0より. 時間によらず変位しない位置があることがわかる。とが4に等しいとき, こ の位置は0一間に[ キキ ]点ある。 原点0に近い点の座標をんによ り表すと 【央牌大 改) 2 と2の ダ 、 K 277. (の @⑫ 時刻 における点P の振動は, 原点0の振動より 遅れている。

解決済み 回答数: 1
1/2