学年

教科

質問の種類

経営経済学 大学生・専門学校生・社会人

国際収支から為替レートが決まることでドルの価格が決まることを示しているこの図表の横軸の取引量とは何の取引量を意味しているのですか??

Chap 2 国際収支と外国着替し 【1】 変動相場制の国際収支調整機能 国際収支黒字とは、資金の流入が流出を 上回ることを意味します。 資金の流入とは 外国から日本に資金が入ってくることです が、外国にある外貨は,外国為替市場で外国 通貨が円に交換されてから日本に入ってきま す。なぜなら、日本国内では外貨のままでは 利用できないからです。 反対に、資金の流出は,日本から外国資 金が流出することですが,日本にある円は, 外国為替市場で円を外国通貨交換して外貨で、 海外に出ていきます。 なぜなら, 外国では円 のままでは利用できないからです。 したがって,国際収支の黒字とは、自国に 資金が流入するほうが多いので、自国通貨買 い外貨売りが多く、自国通貨は超過需要,外 貨は超過供給の状態です。 したがって, 図表 27-5のドルの市場では, 右上がりの供給 曲線と右下がりの需要曲線であればドルの超 過供給となり,ドルは下落(=円が上昇) し 需要と供給が一致。すなわち国際収支が均衡 する(ゼロとなる) 為替レート水準e*に落 ち着きます。 逆に国際収支が赤字の場合はドルの超過 需要であり、ドルの価値が上昇(=円が下落) 需要と供給が一致, すなわち国際収支が する (ゼロとなる) 為替レート水準e*に 落ち着きます。 このように、 為替レートの調 調整により国際収支は均衡に向かいます。 復習 Movie 177 国際収支とは,一国における資金の流入 から流出を差し引いたものです。 Point! ですから、資金の流入とは、自国 通貨買い(=自国通貨の需要), 外貨 売り(=外貨の供給) となります。 PPoint! ですから、資金の流出とは、自国 通貨売り (=自国通貨の供給), 外貨 買い(=外貨の需要)となります。 図表27-5 外国為替市場と国際収支 I 為替レート (1$○○円) ドルの価格- 国際収支黒字 S 外貨超過供給 e1 ドルの 供給曲線 E e2 ドルの 需要曲線 外貨超過需要 国際収支赤字 D 取引量

未解決 回答数: 1
数学 大学生・専門学校生・社会人

(1)から分かりません。なぜこのようなグラフになるんでしょうか?

123 3章 8 関数とグラフ つけ。 かけ。 重要 例題 立つ。これを場合分けに利用 幅1の範囲で区切り ≦2x<2,2x=2で場合分け、 1≦x<2, x=2で場合分け、 =-2 -2-101 きy=-2 (2) y=-1 71 定義域によって式が異なる関数 関数f(x) (0≦x≦4) を右のように定義すると 次の関数のグラフをかけ。 (1) y=f(x) 指針 (2)y=f(f(x)) 2x (0≦x<2) f(x)= 8-2x (2≤x≤4) 定義域によって式が変わる関数では, 変わる 境目のxyの値に着目。 (2)f(f(x)) f(x)のxにf(x)を代入した式で、 f(x) <2のとき2f(x) f(x)のとき 8-2f(x) (1)のグラフにおいて,0≦f(x) <2となるxの範囲と, 2≦f(x)≦4 となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 (2f(x) (0≦f(x)<2) (2) f(f(x))= 18-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき 1≦x<2のとき 2≦x≦3のとき f(f(x))=2f(x)=2.2x=4x f(f(x))=8-2f(x)=8-2.2x =8-4x f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4のとき f(f(x))=2f(x)=2(8-2x) 変域ごとにグラフをかく。 < (1) のグラフから,f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, f(x) の式は y=0 1≦x<2なら =16-4x f(x)=2x y=1 よって, グラフは図(2) のようになる。 y=2 (1) (2) y ya =x+1 -1 2 A M O 1 2 3 4 x 0 1 2 3 4 x 2≦x≦3なら f(x)=8-2x のように, 2を境にして 式が異なるため, (2) は左 の解答のような合計4 通 りの場合分けが必要に なってくる。 -2=0 an x= ntpと表されるとき、 とき, 01より xの整数部分を表す記号であ 参考 (2) のグラフは,式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 [右の図で、黒の太線・細線部分が y=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 とする。 8から2倍を 引く 4 2 0 4 x 2倍する 練習 関数f(x) (0≦x<1) を右のように定義するとき, ◎ 71 次の関数のグラフをかけ。 2x (0 ≤ x < 1/1) f(x)= (1) y=f(x) 2x-1 (2) y=f(x)) 11/1/1≦x<1)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(2)なぜ解答のような解き方ができるのか分からないので教えて欲しいです 僕は (a,b)=(30,10),,,①の時のZ((a,b)における1次近似式をZと置いてます)と(a,b)=(30.05,10.02),,,②の時のZを求めて, ②-①という戦法で解こうとしましたが... 続きを読む

2. 基礎解析学 (1)] (1) f(x,y) = f(a,b)+2ab(x-a)+3a2b2(y-b)+(-a)2 + (y-b)2C (x,y), ただし C'(x,y) は (a, b) のまわりで定義され, (a,b) で連続でC(a,b) = 0 となる函数 . (2) 約 8400 増加. [f(a,b)+2ab'(x-a)+3a2b2 (y-b) において (a,b)=(30,10), x-a=0.05, y-b=0.02 とすると 2・30・103・0.05 + 3・302.102.0.02 = 3000 + 5400 = 8400 これがf の 変化量の近似値となる.なお, 実際の変化量は8431.3... 程度 . ] (3) 約 2000 減少 [f(a,b)+2ab(x-a)+3a2b2(y-b) において (a,b)=(20,10), x-a=0.01, y-b= -0.02 とすると, 2・20・103・0.01 + 3.202.102(-0.02) =400-2400=-2000. 実際の 変化量は1997.5... 程度. ] [注.「全微分」というものをdz = fr(a,b)dx+fy(a,b) dy あるいはこれと同等な形で定義して いる教科書も多い. これの詳しい意味は教科書である難波誠 『微分積分学』 (裳華房) p.146 を参 1 照してほしい.この定義を用いると次のような解答が可能: (2) dz=2abdx+3a2b2dy におい て (a,b) = (30, 10), dx = 0.05, dy = 0.02 とすると, dz = 2.30.10°.0.05 + 3・302・102.0.02 = 3000 + 5400 = 8400. これがの変化量の近似値となる. (3) dz = 2abdx+3a2b2dy において (a,b) = (20,10), dx = 0.01, dy = -0.02 とすると, dz = 2.20・103・0.01 + 3.202.102(-0.02) = 400 - 2400 = -2000. ]

回答募集中 回答数: 0
生物 大学生・専門学校生・社会人

教えてもらえるとありがたいです!

II DNAの研究史において、 DNA の複製方法には、次の仮説1~3があった(図2)。 (c) 仮説 1 もとの2本鎖DNAはそのまま残り、新たな2本鎖DNAができる。 仮説2 もとの2本鎖DNAのそれぞれの鎖を鋳型にした2本鎖DNAができる。 仮説3 もとの2本鎖DNAはヌクレオチドがばらばらになり、もとのDNA鎖と新しい DNA 鎖が混在した2本鎖DNAができる。 この仮説3では、親世代のヌクレオチ ドが均等に(それぞれ50%ずつ) 複製後のDNA分子に伝わるものとする。 新たに複製された もとのDNA鎖 DNA 鎖 || I FO 仮説1 仮説 2 仮説3 図2 メセルソンとスタールは、窒素原子に重さの異なるもの (通常の窒素原子と重い窒素原 子) が存在することを利用して, 次の手順1~3で仮説1~3を検証する実験を行った。 手順1重い窒素を含む培地で大腸菌を何世代も培養し、DNAに含まれる窒素がすべて 重い窒素に置き換わった大腸菌を得た。 手順2 手順1で得た大腸菌と, DNAに含まれる窒素がすべて通常の窒素である大腸菌 からDNAをそれぞれ抽出し, 抽出したDNAを遠心分離して, 2本鎖DNAの比 を調べた。その結果、図3のように、重い窒素のみからなるDNAは試験管の下 方に、通常の窒素のみからなるDNAは上方にバンドとして現れた(図3)。 手順3 手順1で得た大腸菌を、通常の窒素を含む培地で1回分裂させた。

回答募集中 回答数: 0
公務員試験 大学生・専門学校生・社会人

わかる【解放のテクニック】部分の②の甲一人何時間働いたかを確かめる計算式で1-5分の3となっているのですが、なぜ5分の3を引くのでしょうか?具体的に教えて頂けると助かります。

p.114、22日目:仕事算 基本公式に数値を入れて計算する 1日 (時間) 当たりの仕事量 = 所要日数(時間) ●仕事量=1日(時間) 当たりの 仕事量×働いた日数(時間) ●全体の仕事日数 1 = わかる! 解法のテクニック 11人の1時間当たりの仕事量を計算する 基本公式を利用して、 1時間当たりの仕事量== 所要日数(時間) 仕事全体の量を1とすると、1人の1時間当たりの仕事量は 甲 12/21丙115 20 ② 3人での1時間当たりの仕事量を計算する 3人一緒に働くと1時間当たりの仕事量は 210+12+15=1/13 ③全体の仕事時間を計算する 分母を最小公倍数に ここでは分母を60に揃える 基本公式を利用して、全体の仕事時間=1+各人1時間の仕事量の和解答 よって、かかる時間は1÷- = 5時間 5 各人の1日当たりの仕事量の和 ※全体の量から考える場合、 分子が1となる。 残りの量から考 える場合は、1を残りの仕事量に置き換えて計算する。 (2) 3人で3時間働いた後、 残りを甲1人で行った。 甲1人では何時間働きました か。 A 3時間 B 4時間 C 5時間 D 6時間 E 7時間 F 8時間 わかる! 解法のテクニック 例題 1 13人で3時間働いたときの仕事量を計算 制限時間: 150 秒 3人で3時間働いたときの仕事量は×3時間= ある仕事をするのに甲1人では20時間、 乙1人では12時間、 丙1人では15時間か かる。 (1)3人同時に働いたら、 仕事は何時間で終わりますか。 A 3時間 B 4時間 C 5時間 D 6時間 E 7時間 F 8時間 甲1人で行ったのは1 -号=号 ② 甲1人で行った時間を計算 仕事量 基本公式を応用して、 残りの仕事時間=残りの仕事量 甲1時間の仕事量 だから、10+20=8時間 解答 2番目の公式の応用

未解決 回答数: 1
1/34