学年

教科

質問の種類

数学 大学生・専門学校生・社会人

位置関係の問題です。途中までは分かるのですが、何故三角形AESと三角形MDSが共に二等辺三角形だとわかるのでしょうか…?教えて頂きたいです🙇🏻‍♀️🙇🏻‍♀️

15 04 位置関係 ② 方角を考慮して図を描く! 頻出度 ★★★☆☆ 重要度★★★☆☆ コスパ★★★☆☆ 方角を考慮した位置関係の問題で、 ほとんどの場合、 上を北とするなど方角を 決めて図を描きます。このタイプの問題は、距離(長さ)の条件から図形を考 えるものが多く、三平方の定理や相似から求めるなど、 数的推理の要素が大き いです。 T_PLAY1 方角と距離の条件から図を描く問題 XX 2X 3X 警視庁Ⅰ類 2011 A~Fの家と駅の位置関係について、次のア~オのことが分かっている。 Aの家の8km 真南にBの家があり、AとBの家を結ぶ線分上に駅がある。 Cの家はBの家の真東にある。 ウ Dの家はCの家の1km 真北にあり、Dの家から北西に進むと駅を通り Eの家に着く。 .Eの家はAの家の2km 真西にある。 .Fの家は駅の真東、かつ、Dの家の北東にある。 以上から判断して、確実にいえるのはどれか。 1.Aの家から駅までの距離は2.5kmである。 2.Bの家から駅までの距離は5km である。 3.Cの家から駅までの距離は√74kmである。 4.Dの家から駅までの距離は4√2kmである。 5.Fの家から駅までの距離は10kmである。 上を北方向として図を描こう! まずは、誰かの家を基準として、そこ につなげるんだ。距離が示されている条件ア, ウエに着目してみて! 方角の条件がありますので、上を北として地図を描くように位置関係を図に します。 方角と距離がともに示されている条件ア,ウエに着目すると、アとエには Aの家が共通していますので、これらを組み合わせて図1のようになります。 位置関係 ②

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

位置関係の問題です。途中までは分かるのですが、何故三角形AESと三角形MDSが共に二等辺三角形だと判断できるのかが分かりません。これはどこからそう考えてるのでしょうか…?どなたか教えて頂けますでしょうか🙇🏻‍♀️🙇🏻‍♀️

が確 かり、 ます。 13 04 位置関係 ② 方角を考慮して図を描く! 頻出度 ★★★☆☆ 重要度★★★☆☆ コスパ★★★☆☆ 方角を考慮した位置関係の問題で、 ほとんどの場合、 上を北とするなど方角を 決めて図を描きます。 このタイプの問題は、距離 (長さ) の条件から図形を考 えるものが多く、 三平方の定理や相似から求めるなど、 数的推理の要素が大き いです。 PLAY1 方角と距離の条件から図を描く問題 警視庁Ⅰ類 2011 A~Fの家と駅の位置関係について、次のア~オのことが分かっている。 ア.Aの家の8km 真南にBの家があり、AとBの家を結ぶ線分上に駅がある。 イ.Cの家はBの家の真東にある。 ウ.Dの家はCの家の1km 真北にあり、Dの家から北西に進むと駅を通り Eの家に着く。 エ.Eの家はAの家の2km 真西にある。 .Fの家は駅の真東、かつ、Dの家の北東にある。 以上から判断して、確実にいえるのはどれか。 1.Aの家から駅までの距離は2.5kmである。 2.Bの家から駅までの距離は5km である。 3.Cの家から駅までの距離は74kmである。 4.Dの家から駅までの距離は4√2km である。 5.Fの家から駅までの距離は10kmである。 F 上を北方向として図を描こう! まずは、誰かの家を基準として、そこ につなげるんだ。距離が示されている条件ア, ウエに着目してみて! 方角の条件がありますので、上を北として地図を描くように位置関係を図に します。 方角と距離がともに示されている条件ア, ウ, エに着目すると、 アとエには Aの家が共通していますので、これらを組み合わせて図1のようになります。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

青チャートの式と曲線についてです。 赤枠で囲った部分は、図を書けば一目瞭然ですが、式から求めるにはどうすれば良いのでしょうか? よろしくお願いします🙇

[重要] 例題 接線の交点の軌跡 楕円x2+4y2=4について,楕円の外部の点P(a,b)から,この楕円に引いた2 本の接線が直交するような点Pの軌跡を求めよ。 [類 お茶の水大] 指針点Pを通る直線y=m(x-a)+6が,楕円x2+4y²=4に接するための条件は, x2+4{m(x-a)+b=4の判別式Dについて, D=0が成り立つことである。 また、D=0の解が接線の傾きを与えるから,直交傾きの積が-1 と 解と係数の関 係を利用する。 なお,接線がx軸に垂直な場合は別に調べる。 [参考] 次ページでは, 楕円の補助円を利用する解法も紹介している。 CHART 直交する接線 D = 0, (傾きの積)=-1の活用 解答 [1] a≠±2のとき, 点Pを通る接線の方程式は y=m(x-a)+b とおける これを楕円の方程式に代入して整理すると (4m²+1)x2+8m(b-ma)x+4(b-ma)2-4=0 (*) このxの2次方程式の判別式をDとすると D=0 ここで 12/2=16m²(b-ma)-(4m²+1){4(b-ma)-4} TRETJI =-4(b-ma)^2+4(4m²+1) =4{(4-α²)m²+2abm-62+1} ゆえに (4-a²)m²+2abm-b²+1=0 .... IE の2次方程式 ①の2つの解を α, β とすると αβ=1 - 62+1 すなわち 4-a² よって a²+b=5, a+±z [2] α=±2のとき, 直交する2本の接線はx=±2,y=±1| 863 NO (複号任意) の組で, その交点の座標は =-1 842 88-11+x20=1+ (2, 1), (2, -1), (-2, 1), (-2, -1) にある 円x2+y2=5 -√5 基本63 √√5 6754 11 -2 0 |-1 -√5 x 2 +4y²=4 判別式 P(a, b) √5 2, x (*) (b-ma) のまま扱うと, 計算がしやすい。 直交傾きの積が1 < 解と係数の関係 2次方程式 px2+gx+r=0 について =-1が成り立つとき, q^-4pr=q²+4p2> 0 となり、 異なる2つの実数 解をもつ。 [1], [2] から 求める軌跡は 68+(-3) [参考] m の2次方程式 ① が異なる2つの実数解をもつことは, 楕円の外部の点から2本の接線が 引けることから明らかであるが (解答の図参照), これは次のようにして示される。 D' mの2次方程式 ① の判別式をDとすると 2/2=(ab)²-(4-q²)(−62+1)=a²+46²-4 点Pは楕円の外部にあるから 4 +46²4(>が成り立つ理由はか.125 参照。) ゆえに D'>0 なお、一般に楕円の直交する接線の交点の軌跡は円になる。この円を準円という。 に接する2本の直線 2章 8 2次曲線の接線

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(3)で①に-2分の3をかけたらダメなんですか? お願いします。

2年数学 過去問題を解く (2020(R2)) 年度 1月 ( 日( 配布 ① 次の | の中に適当な数または式を入れよ。 ただし (2), (5) は ①~③の番号で答えよ。 (1)s^²-18 を因数分解すると になる。 (2) 三角形ABCにおいて, ∠A<90" であることは、三角形ABCが鋭角三角形であるための . ① 必要十分条件である ③ 十分条件であるが必要条件ではない 10 -8 6 (3) S(s) はについての2次関数とする。 方程式∫(x)=0の解は1.3であり, S(0) 2 である。 放物線y f(x)の頂点のy座標は [ である。 (4) 三角形ABCの辺BC, CA を1:3に内分する点を それぞれP, Qとする。 線分 AP, BQ の交点をRとする。 AP13 のとき, AR- である。 2 0 (5) 下のヒストグラムはS市の30日間の最高気温のデータをまとめたものである。 ヒストグラムに 対応する箱ひげ図は である。 (日) Sif 4 6 8 10 12 14 16 18 20 (C) ② 必要条件であるが十分条件ではない ① 必要条件でも十分条件でもない (1) (+2)(49) =(+2)(22+3)(21-3)!! X (2) <A<90°鋭角三角形 12月脇形 【2年1月県下一斉模擬試験 】 【科目: 数学 単元名 1 I No. ( 4 ) ( 3 ) 宜( 号 氏名( 2 a = - ① H -1/(2x)+2 - 3f₁a-15²-17 +2 面倒)∠A=30°,<B=1200 よって、必要条件であるが十分条件でない② (³) f(a)= a (x+1)(x-3) (a: 12*) 255113. f(0)=0(0+1210-3) = -3Q=2 よって、ナッシー/(ベースメーン) =1+1+x+2 1012 14 16 18 20 (°C) 3 →8 X 4^-9 -9 → 4-18 -1 Q -3- (5) よって、頂点の座時はり 35¹1ht) fra) = − }(20-2) = 0 x=1 fev: -(1-2-3)= (4) ・メネラウスの定理より. QA =1 RP, BC x PB ca AR RP 4 xx=1 RP AP=13なので、AR=12/11 4~6°3 6°~80 1 8°~ 10⁰ 4 10~1283 12⁰~140 7 14° ~ 16° 9 16°~18° 2 1180~20° T Qi 中央値Q2は12~1 第1回分程改Q」は80~10 第3 〃 Q3は14~160 よって、② 1~7⑧9~516~22③3 24~30 Q2

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

至急🚨 帝京大学2022年の過去問の解説お願いしたいです🙇 どなたか数学が得意な方解説お願いします🙇

数学(総合) 経済・法・文・外国語・教育・医療技術・福岡医療技術学部 〔1〕次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 ただし, 解答に根号が含まれる場合は根号の中の自然数が最小となる形とし,分母は有理化する こと。 また、解答が分数となる場合は既約分数で答えること。 (1) 整式(x+1)(x+3)(x-3)(x-9) + 16x2を因数分解すると (x2- ア イ となる。 x- (2) αを6-22 をこえない最大の整数とし, b=6-2√2-αとするとき 1 62 + +2= 62 ウ である。 (3) 集合A={9, a, a-3},B={1, 4, 26 + 1,62} について, ACBであり, a bの値がともに負であるとき, a = I b = オ である。 〔2〕次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 ただし, 解答に根号が含まれる場合は根号の中の自然数が最小となる形とし, 分母は有理化する こと。また、 解答が分数となる場合は既約分数で答えること。 (1)a,bを定数とする。 放物線y=5x²ax+a+bの頂点が点 (2, 1) であるとき, b= であり、この放物線をx軸方向に3,y軸方向に1だけ平行移動し ウ である。 た放物線の方程式はy=5x2 + ア イ x+ (2) 2次不等式xx-2<0 を満たすすべてのが 2次不等式(x-a)(x-a-5) > 0 を満たすとき,定数aの値の範囲は設する際 as I オ Saである。 〔3〕次の にあてはまる数を求め、 解答のみを解答欄に記入しなさい。 ただし, 解答に根号が含まれる場合は根号の中の自然数が最小となる形とし, 分母は有理化する こと。 また, 解答が分数となる場合は既約分数で答えること。 円に内接する四角形 ABCD において, AB=5,BC = 3,CD=2,∠ABC=60° 2つの対角線 AC と BD の交点をEとする。 このとき, (1) AD= (2) BE ED 〔4〕次の (3) M = 0 1 p ア 3 BD = 10453 (3-2 PH エ であり, BE = E 4 5 イ 年 L 1 (1) 下の図があるクラスで行ったテストについての, 37人の得点の箱ひげ図である 四分位偏差は 四分位範囲は とき, このデータの範囲は イ ウ である。 四角形 ABCDの面積は にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 ア オ 9 である。 a, b, 83, 9, 52, 79. 38, 41. 63. 35. である。 . 19 20 (点) (2) 次の10個からなるデータについて 中央値が48, 第1四分位数が38, 第3四分位 .b= エ オ である。 ただし, a < bとす 数が77であるとき,a=

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

 高校数学Ⅲ、微分法の応用問題です。画像右側の「課題4」の解き方が分かりません。解答法を教えて頂けますと助かります。よろしくお願いします。

196 15 20 ○○○○2 最短のケーブルで都市をつなぐ方法 3つの都市の位置を地図上で確認したところ, 右のような△ABC の頂点上にあった。 このと き、どのように結べばケーブルの長さの総和が 10 最小になるだろうか。 座標平面を利用して考え B てみよう。 学習のテーマ 微分法の応用 複数の都市をネットワーク回線でつなげることを考える。このとき, コ ストを低くするためには、つなげるケーブルの長さの総和をできるだけ 短くする必要がある。 各都市をどのようにケーブルでつなげればよいか 考えてみよう。 H 3 3点をA(0, 3), B(2,0),C(20) とする。 △ABC の周および内部 に点Pをとるとき, AP+BP+CPが最小となる点Pの座標と, その ときの AP + BP + CP の最小値を求めてみよう。 ただし, AP +BP+CP が最小となるのは, 点PがABC の対称軸上にある ときであることがわかっている。 [2] ABCの最大の角が120°より大きい場合 △ABCの最大の角をはさむ2辺で3点を結ぶ 4 一般に, 3点A,B,Cを線分で結んでつなげるとき, その線分の長さ の総和が最小となるのは,次のように結んだときであることが知られて いる。 [1] ABC の最大の角が120° より小さい場合 [1] △ABCの内部に点Pをとり, 点Pから3点を 結ぶ B・ [2] B C A C 5 10 15 次に、他の4つの都市の位置を地図上で確認したところ, 正方形の 点上にあった。 ある生徒は, この4つの都市を右のように対角 Ar 線状につなげれば, ケーブルの長さの総和が最小 になると考えた。 点Pは対角線の交点である。 課題 4 R 前ページのことを利用すると、 正方形の内部 A に2点Q, R をとり、 右の図のようにして4 つの都市を結んだ方が, ケーブルの長さの総 和が短くなる場合があることがわかる。 その理由を考えてみよう。 B Q 課題学習 P R D 課題4のように正方形の内部に 2点 Q, R をとるとき, AQ+BQ+QR+CR+DR が最小となるときのつなげ方が, ケーブルの 長さの総和を最小にして、 正方形の頂点上にある4つの都市をつなげる 方法である。 2点 Q, R をどの位置にとればよいか, 座標平面を利用して考えてみ よう。 まとめの課題2 4点A(-1, 1), B(-1, -1), C(1, 1), D (11) がある。 実数 αが 0<a≦1の範囲にあるとき, 2点Q(-α,0), R (α, 0) を考える。このとき 20 5本の線分の長さの和 AQ+BQ+QR+CR+DR が最小となるようなaの植 を微分法を利用して求めてみよう。 *

回答募集中 回答数: 0
1/10