学年

教科

質問の種類

数学 大学生・専門学校生・社会人

課題の(1)と(2)解き方教えて下さい

抗体検査 例(抗体検査X) 感染症 X に対して、日本人が抗体を持っている割合は40% です。 Aさんは、精度が90% の抗体検査を受けました。 このとき A さんが、陽性となる確 率、陰性となる確率をそれぞれ求めてみましょう。 ここで、 検査の精度とは、抗体を持 っていた場合に正しく陽性と判定される確率、 および抗体を持っていなかった場合に正 しく陰性と判定される確率のことです。 全確率の公式を用いると、 次のように計算され ます。 0.36 P(Aさんを陽性と判定) = P(Aさんが抗体を持っている) P (正しく判定) + P(Aさんには抗体がない) P (判定が間違う) 4 9 = + 6 1 10 10 10 10 42 (42%) 100 Q.x0.9+0.6×0.1 =0.36+0.06=0142 P(Aさんを陰性と判定) = P(Aさんが抗体を持っている)P (判定が間違う) 一本あり(陽性) +P(Aさんには抗体がない)P (正しく判定) 4 1 6 9 58 P(抗体あり)P(P1体あり = 10 + 10 10 10 100 (58%) 0,4×0,9 P(陽性) 0142 0.6 0136 抗体ない 0.9 0.86 0.1 0.1 0.4 抗体あり ではレポート課題です。 陰性 0.58 ・陽性 0.42 0.9 D. I 100 課題(1)(抗体検査Y)感染症 Y に対して、日本人が抗体を持っている割合は 0.1% です。 B さんは、精度が90% の抗体検査を受けました。 このとき、 全確率の公式を用 いて、 B さんが陽性となる確率、 陰性となる確率をそれぞれ求めてください。 (2) さらに、 抗体検査 XとYについての計算結果から、二つの検査にはどのような違 いがありますか? 比較して分かることを述べてください。

回答募集中 回答数: 0
公務員試験 大学生・専門学校生・社会人

わかる【解放のテクニック】部分の②の甲一人何時間働いたかを確かめる計算式で1-5分の3となっているのですが、なぜ5分の3を引くのでしょうか?具体的に教えて頂けると助かります。

p.114、22日目:仕事算 基本公式に数値を入れて計算する 1日 (時間) 当たりの仕事量 = 所要日数(時間) ●仕事量=1日(時間) 当たりの 仕事量×働いた日数(時間) ●全体の仕事日数 1 = わかる! 解法のテクニック 11人の1時間当たりの仕事量を計算する 基本公式を利用して、 1時間当たりの仕事量== 所要日数(時間) 仕事全体の量を1とすると、1人の1時間当たりの仕事量は 甲 12/21丙115 20 ② 3人での1時間当たりの仕事量を計算する 3人一緒に働くと1時間当たりの仕事量は 210+12+15=1/13 ③全体の仕事時間を計算する 分母を最小公倍数に ここでは分母を60に揃える 基本公式を利用して、全体の仕事時間=1+各人1時間の仕事量の和解答 よって、かかる時間は1÷- = 5時間 5 各人の1日当たりの仕事量の和 ※全体の量から考える場合、 分子が1となる。 残りの量から考 える場合は、1を残りの仕事量に置き換えて計算する。 (2) 3人で3時間働いた後、 残りを甲1人で行った。 甲1人では何時間働きました か。 A 3時間 B 4時間 C 5時間 D 6時間 E 7時間 F 8時間 わかる! 解法のテクニック 例題 1 13人で3時間働いたときの仕事量を計算 制限時間: 150 秒 3人で3時間働いたときの仕事量は×3時間= ある仕事をするのに甲1人では20時間、 乙1人では12時間、 丙1人では15時間か かる。 (1)3人同時に働いたら、 仕事は何時間で終わりますか。 A 3時間 B 4時間 C 5時間 D 6時間 E 7時間 F 8時間 甲1人で行ったのは1 -号=号 ② 甲1人で行った時間を計算 仕事量 基本公式を応用して、 残りの仕事時間=残りの仕事量 甲1時間の仕事量 だから、10+20=8時間 解答 2番目の公式の応用

未解決 回答数: 1
資格 大学生・専門学校生・社会人

簿記についての質問なのですが、業務的意思決定の内製か購入かの意思決定で、2通りの内製可能量が算出できる場合で数量が少ない方を内製可能量にする理由は、少ない方の数量は共通して発生するからということでしょうか? 例えば、写真の解説では甲材料は1,600個で遊休時間は2,000個... 続きを読む

13,884万円 15,000個 購入案: 16,000x ◆総需要量 15.675個 16,000個 ここで、 15,000x +2,200,000 <16,000xとすれば、 x2,200個 したがって、部品Yの年間必要量が2,201 個以上であれば、 内製案の方が有利である。 〔問2〕 1. 内製する場合の関連原価 部品Zの1個あたり関連原価を次のように計算する。 無関 O 直接材料費 2,000円/kg×5kg/個 直接労務費 2,400円/時×4時間/個 変動製造間接費 1,200円/時 × 4時間/個 合 計 = 10,000円/個 = 9,600 = 4,800 24,400円/個 (注)消費賃率 : 3,000円/時×80%=2,400円/時 2. 年間内製可能量 甲材料の消費可能量は8,000kg (=32,000kg-12,000個×2kg/個)、 遊休時間は8,000時間(= 20,000時間12,000個×1時間/個) である。 したがって、 内製可能量は次のとおり計算され、甲 材料の条件から部品 Zの年間必要量3,000個のすべてを内製することができず、 1,600個は内製する 1,400個は購入することになる。 間(= い 内製可能量 年間必要量 甲材料 8,000kg 5kg/個=1,600個 3,000個 遊休時間 8,000時間 4時間/個=2,000個 < 3,000個 3. 関連原価の比較 内 案 購入案 直接材料費 直接労務費 変動製造間接費 購入原価 10,000円/個 ×1,600個=16,000,000円 9,600円/個 × 1,600個= 15,360,000円 25,000円/個 ×1,400個= 4,800円/個 × 1,600個= 3 7,680,000円 5,000,000円 25,000円/個 ×3,000個= 75,000,000円 合 計 74,040,000円 75,000,000円 000円 000円 る。 円)。 両案の差額: 75,000,000円 <購入案〉-74,040,000円 〈内製案> = 960,000円 したがって、 部品 Zについて内製案の方が、 購入案より原価が960,000円だけ低く有利である。

未解決 回答数: 1
1/38