学年

教科

質問の種類

数学 大学生・専門学校生・社会人

数Iの二次関数についての質問です。 ⑵について、頂点の座標が(p,2p−1)で表せるのはなぜですか? 分かる方いたら教えて欲しいです🙇‍♀️

(2) 放物線y=-x2+2x+1 を平行移動した曲線で, 原点を通り、頂点が 線 y=2x-1 上にある。 CHART & SOLUTION 放物線の平行移動 平行移動によってx”の係数は不変 x2の係数はそのままで、問題の条件により,基本形または一般形を利用する。 (1) 移動後の頂点や軸が与えられていないから,一般形からスタート。 平行移動してもx2の係数は変わらず2である。 (2)頂点に関する条件が与えられているから,基本形からスタート。 頂点(b,g)が直線 y=2x-1 上にある⇔g=2p-1 解答 (1) 求める放物線の方程式を y=2x2+bx+c とする。 放物線が2点 (1,1,2,0)を通るから b+c=-3, 26+c=-8 これを解いて 6=-5,c=2 よって 求める方程式は y=2x2-5x+2 (2) 求める放物線の頂点が直線 y=2x-1 上にあるから, 頂点の座標は (p, 2p-1) と表される。 よって, 求める方程式は y=-(x-p)2+2p-1 とされる。 放物線が原点 (0, 0) を通るから 立 基本 68.6g a 頂点や軸の位置はわか らないから,一般形で 考える。 infx軸との交点(2,0) が含まれているので,分解 形y=2(x-2)(x-β) から - スタートしてもよい。 -Cast of 頂点の座標を利用する から、基本形で考える。 (1) (2) f(x) CHARTE 軸と定 (1) f(x [1] (2)(1) 解答 (1) 0-(0-p)2+2p-1 すなわち が2-2p+1=0 ゆえに (p-1)²=0 これを解いて p=1 よって, 求める方程式は y=(x-1)2+1 (y=-x+2x でもよい) inf. (1) là y=2(x− p)²+q, (2) は y=-x2+bx として, 問題の条件から 未知数 q, bを求めることもできる。

解決済み 回答数: 1
資格 大学生・専門学校生・社会人

この下の簿記問題で、貸倒引当金が4,500とか8,400なんでなるの? 減価償却累計額が360,000とか449,999とかになるの?! 出し方がいまいち分からないので教えて欲しいです🙇‍♀️

(1) 第3問 35点 次の(1) 決算整理前残高試算表および(2)決算整理事項等にもとづいて、 答案用紙の貸借対 照表および損益計算書を完成しなさい。なお、消費税の仮受け・仮払いは売上取引 ・仕入 取引のみで行うものとし、 税抜方式で処理する。 会計期間は4月1日から翌3月31日まで の1年間である。 決算整理前残高試算表 借方 勘定科目 貸 290.600 現 金 576,000 当座預 126,000 受取手 926,400 売 掛 金形金税 550,800 仮払消費税 484,000 繰越 3,000,000 建 750,000 備 2,000,000 土 買 借 仮 掛入受消 商 物 ------ 地 金 756,000 金 2,000,000 金 85,800 仮受消費税 985,800 所得税預り金 21,000 貸倒引当金 3,900 建物減価償却累計額 備品減価償却累計額 資 本 「繰越利益剰余金 売 6,120,000 仕 240,000 349,999 金 3,000,000 257,501 上 11,000,000 入 料 2,600,000 給 220,000 法定福利費 135,000租 税 72,000 支払手数料 課 息 60,000 支払 公利 789,200 その他費用 18,700,000 18,700,000 (2) 決算整理事項等 商品¥300,000 を販売し、 代金は8%の消費 先方振出 (軽減税率適用) も含めた合計額を、 の約束手形で受け取っていたが未処理である。 仮受金は、得意先からの売掛金¥86,400の 込みであることが判明した。 なお、振込額と 掛金の差額は当社負担の振込手数料 (問題の後 宜上、この振込手数料には消費税が課されない 「ものとする)であり、入金時に振込額を仮受 として処理したのみである。 \ 受取手形と売掛金の期末残高に対して貸倒引 当金を差額補充法により1%設定する。 期末商品棚卸高は¥385,000である。 5、収入印紙の未使用分¥19,800を貯蔵品勘定に 振り替える。 6.有形固定資産について、次の要領で定額法に より減価償却を行う。 建物: 耐用年数25年 残存価額ゼロ 備品: 耐用年数5年 残存価額ゼロ 100000 なお、 決算整理前残高試算表の備品¥750,000 のうち¥250,000 は昨年度にすでに耐用年数を むかえて減価償却を終了している。そこで、今 年度は備品に関して残りの¥500,000について のみ減価償却を行う。 消費税の処理を行う。 社会保険料の当社負担分¥20,000を未払い 上する。 借入金は当期の9月1日に期間1年、利率 3%で借り入れたものであり、 借入時にすべての 利息が差し引かれた金額を受け取っている。そ こで、利息について月割により適切に処理する。 10.未払法人税等¥300,000を計上する。なお、 当期に中間納付はしていない。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

数学青チャ1A例題59から 赤枠部分について、なぜ正の公約数を持つと有理数でないといえるのでしょうか? また、それをなぜ分数の形にするのでしょうか?

あり ない ない 基本 例題 59 √7 が無理数であることの証明 00000 √7 は無理数であることを証明せよ。ただしnを自然数とするとき, nが7の 倍数ならば, nは7の倍数であることを用いてよいものとする。 [ 類 九州大 ] 指針 無理数であることを直接証明することは難しい。 そこで, 前ページの例題と同様 直接がだめなら間接で 背理法 基本 58 4 解答 に従い 「無理数である」 = 「有理数でない」を,背理法で証明する。 つまり、√7 が有理数(すなわち 既約分数で表される)と仮定して矛盾を導く。・・・・・・・・・ [補足] 2つの自然数α, bが1以外に公約数をもたないとき, αとは互いに素である (数学 A 参照)といい, このときは既約分数である。 して る。 √7 が無理数でないと仮定すると, 1以外に正の公約数をもた ない自然数 α, b を用いて7 と表される。 a √7 は実数であり、無理 b このとき 両辺を2乗すると a=√76を用いて a2=762 ① でないと仮定しているか 有理数である。 この両辺を2乗すると よって, αは7の倍数であるから, a も 7の倍数である。 例題の「ただし書き」を いている。 ゆえに, cを自然数として, α = 7c と表される。 a2=49c2 ① ② から 762=49c2 すなわち 627c2d ② よって, 62 は7の倍数であるから, 6も7の倍数である。 ゆえに α ともは公約数7をもつ。 これも「ただし書き る。 これはaとbが1以外に公約数をもたないことに矛盾する。 したがって√7 は無理数である。

解決済み 回答数: 1