学年

教科

質問の種類

数学 大学生・専門学校生・社会人

右の欄の下の方のとこの項数のとこに2のnー1乗ってあるんですけどそれってどうやってわかるんですか? これって2nー1とかじゃダメなんですか? よろしくお願いします

井安 元気フ 難易度 CHECK 1| CHECK2 CHECK3 元気カアップ問題 127 次の連 3 と与えられている。 1 1 8 3 8 5 8 7 16'16 1 13 数列{a.}が, 2'4'4'8 m ;のとき, m の値を求めよ。また Sm= E a, を求めよ。 128 (2) a 1 am= n=1 ヒント ヒント!)これは, 分母2',2?, 2*, …によって, 群数列に分けて考えるとうま。 いくんだね。 n22 ココがポイント 解答&解説 解き 数列 {a,}を次のように群に分けて考える。(第7群の初項) ==は、第7郡 11 a1 a2, a3 a4, as, a6, ay A8,…… Am,… 128 の初項だね。よって, mは 第6群までの各群の項数の 和に1をたしたものだね。 ne 1 1 3 1 3 5 7 1 2 2? 22|| 2 2 2° 2° 24 27 第 第 1 2 群 群 (2項) 第 (1項) (4=2°項) 群 (8=2°項) 群 (2°項) 11 ここで, am= 1 は, 第7群の初項なので, 2 (最初の数 128 20 (最後の数 m=1+2+2?+…+2°+1=63+1=64 (答)」←1+2+2?+…+2は 初項a=1, 公比r=2, 項数n=6(=5-0+1) (2) a 1-(1-2) 1-2 第6群までの各群の項数の和 =2°-1=64-1=63 (最後の数)(最初の数 次に,第1群の数列の和をT, とおくと, の等比数列の和だね。 T,= 1 3 2"-1 11 {1+3+5+…+(2"-1)}←1+3+5+……+(2"-1) は, 2" 2" 2" 2" 初項1,末項2"-1, 項数 2"-1の等差数列の 和より, こ 27-1 項 2 2 n-1 1 :X 2" -=2"-2 となる。 (末項 ミ 項数 初項 2 - 品 S.=2.-2T. 6 6 2 a, =X T,+as4= 11 2 22"-2+ n=1 n=1 128 第6群までの数列の和)(第7群の初項 am=asa) n=1 T,=22" 63 n=1 n=1 11 63×64+1 4033 128 (答) 2(1-2) 63 128 128 1-2 2 a=2", r=2, n=6の 等比数列の和 196 リ

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

m=のときになぜ1を足すのかがわかりません。真ん中らへんのやつです。よろしくおねがいします

ヒント!リこれは, 分母2',2°, 2°, …によって, 群数列に分けて考えるとうまく 群数 難易度 CHECK 1 CHECK2 CHECK3 元気カアップ問題 127 3 と与えられている。 1 7 16'16 5 3 8'8 13 8 11 数列{a,}が、 8 2) 4 | チ 4 m のとき, m の値を求めよ。また Sm3D 2 a, を求めよ。 128 1 n=1 am いくんだね。 ココがポイント 解答&解説 数列{a}を次のように群に分けて考える。(第7群の初項) 1 コam= 128 =方は,第7群 ai a2, a3 a4, as, a6, ay as, am の初項だね。よって, mは 第6群までの各群の項数の 和に1をたしたものだね。 1 1 3 1 3 5 7 1 2|2? 2|| 2 2 2° 2 2 第 2 群 (2項) 第 4 群 (8=2°項) 第 群 (1項) 群 (4=2"項) 群 (2°項) 1 ここで,am= 128 -は, 第7群の初項なので, 最初の数 三 20 (最後の数) m=1+2+2?+…+2*+1=63+1=64 -(答) ←0+2+2"+…+2@は 初項a=1, 公比r=2, P 1(1-29) 第6群までの各群の項数の和 =2°-1=64-1=63 項数n=6(=5-0+1) 1-2 最後の数)(最初の数 次に,第n群の数列の和を T,とおくと, の等比数列の和だね。 1 T,= 2" 2"-1 3 1 {1+3+5+…+(2"-1)} 1+3+5+…+(2"-1)は, 2" 2" 2" 初項1,末項2"-1, 項数2"-1の等差数列の 和より, 2タ-1 項 2 2 1 2".2"-2-2 となる。 (項数 初項 (末項 三 2" 2 (27-1 1+2"-1) m 6 6 2 . Sm=E a,= 2 T, +a64= 2 2" 2+ 128 n=1 n=1 n=1 第6群までの数列の和)(第7群の初項 am=Qs4. n=1 =1 63 1 63×64+1 4033 (答) 2(1-2) _63 2 1-2 ニ 2 128 128 128 a=2", r=2, n=6の 等比数列の和 196

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

なぜbnがn -1群なのかがわかりません 教えてくださいお願いします

元気カアップ問題 126 自然数の列を次のような群に分ける。 12.3|4,5,6|7,8, 9, 10|11, 12, 13, 14, 15|16, 17, … 難易度 CHECK I CHECK2 CHECKJ 1)第n群の初項を b。とおく。b, を求めよ。 (2)第n群の項の総和を S, とおく。 S, を求めよ。 (東北学院大*) レント!)自然数の列なので,全体の中の何番目かが分かれば, その数がそのまま その項の数になる。つまり,an==nなんだね。よって,(1)のb,=第n-1群までの 各群の項数の和+1となる。 ホ 解答&解説 ココがポイント bi b2 b4 bs 12,3|0, 5,6 (0,8,9, 10|1),12, 13, E E 介第n群の初項がb。より, b=1, bz=2, b3=4, b4=7, bs=11, … 第 第 第 第 1 2 群 群 群 (3項) (4項) 1項)(2項) (5項) となる。 (1) 第n群の初項を b。 とおくと,これは, 第n-1群 までの各群の項数の和に1をたしたものなので, このnにn-1を代入して, n-1 第n-1群までの各群の項数の和k%=ラ(n-1) n-1 どk=(n-1)(n-イナT) k=1 b,=(n°-n)+1 ① (n%=D1,2,…) ……(谷) 三 となる。 2)第n群はb,, bn+1, b,+2, …, ba+1-1| b.+1 n項 第n+1群の初項) よって,第n群の項の総和 S,は, 初項b., 公差1, 項数nの等差数列の和より, (26. (①より) n{n°-x+2)+n-1} n{2b,+(n-1)·1}_ 2 合等差数列の和 n{2a+(n-1).d} S,= 2 S,= 2 (答) =ラn(n'+1)(n=1,2,3…) 195

回答募集中 回答数: 0