学年

教科

質問の種類

資格 大学生・専門学校生・社会人

減価償却費や備品減価償却累計額などの意味がわからずここの問題全ての意味がわかりません。 細かく解説して欲しいです!

問題 10-4 次の各取引について仕訳しなさい。 なお,減価償却の記帳方法は間接法によること。 TAS ① 決算(年1回)にあたり,備品(取得原価¥180,000,耐用年数5年,残存価額ゼロ)について, Lactobe 14 a 50 減価償却(定額法)を行う。 2012 ex d ② 取得原価¥600,000,減価償却累計額¥324,000の備品を¥310,000で売却し、代金のうち¥50,000 は先方が振り出した小切手で受け取り、残額は月末に受け取ることにした。 BEHE ③ 取得原価 ¥3,300,000, 減価償却累計額¥2,376,000の車両運搬具を売却し,代金¥850,000は月末 に受け取ることにした。 ④ 決算 (3月31日) にあたり, 備品 (耐用年数10年, 残存価額ゼロ) ¥700,000につき定額法に 754 GEBORINE より減価償却を行う。なお,¥700,000のうち¥400,000は購入後4年度目であるが,¥300,000は SECTOR (30 HAN 今年度の6月1日に購入したもので,これについての減価償却費は月割計算で計上する。 STRES Theo ⑤ X2年4月1日に購入した備品 (取得原価¥800,000, 耐用年数5年, 残存価額ゼロ,定額法に より減価償却を行っている)が不用となったので, X6年6月30日に¥200,000で売却し,代金は 翌月末に受け取ることとした。 なお, 当社の決算日は3月31日で, 減価償却費については月割計 算により計上し、減価償却累計額勘定を経由せずに直接計上すること。 6 X1年7月1日に購入した備品 (取得原価¥300,000,耐用年数5年,残存価額ゼロ,定額法に より減価償却を行っている)が不用となったので, X5年9月30日に¥15,000で売却し、代金は現 金で受け取った。 なお, 当社の決算日は3月31日で, 減価償却費については月割計算により計上 し,減価償却累計額勘定を経由せずに直接計上すること。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

 高校数学Ⅲ、微分法の応用問題です。画像右側の「課題4」の解き方が分かりません。解答法を教えて頂けますと助かります。よろしくお願いします。

196 15 20 ○○○○2 最短のケーブルで都市をつなぐ方法 3つの都市の位置を地図上で確認したところ, 右のような△ABC の頂点上にあった。 このと き、どのように結べばケーブルの長さの総和が 10 最小になるだろうか。 座標平面を利用して考え B てみよう。 学習のテーマ 微分法の応用 複数の都市をネットワーク回線でつなげることを考える。このとき, コ ストを低くするためには、つなげるケーブルの長さの総和をできるだけ 短くする必要がある。 各都市をどのようにケーブルでつなげればよいか 考えてみよう。 H 3 3点をA(0, 3), B(2,0),C(20) とする。 △ABC の周および内部 に点Pをとるとき, AP+BP+CPが最小となる点Pの座標と, その ときの AP + BP + CP の最小値を求めてみよう。 ただし, AP +BP+CP が最小となるのは, 点PがABC の対称軸上にある ときであることがわかっている。 [2] ABCの最大の角が120°より大きい場合 △ABCの最大の角をはさむ2辺で3点を結ぶ 4 一般に, 3点A,B,Cを線分で結んでつなげるとき, その線分の長さ の総和が最小となるのは,次のように結んだときであることが知られて いる。 [1] ABC の最大の角が120° より小さい場合 [1] △ABCの内部に点Pをとり, 点Pから3点を 結ぶ B・ [2] B C A C 5 10 15 次に、他の4つの都市の位置を地図上で確認したところ, 正方形の 点上にあった。 ある生徒は, この4つの都市を右のように対角 Ar 線状につなげれば, ケーブルの長さの総和が最小 になると考えた。 点Pは対角線の交点である。 課題 4 R 前ページのことを利用すると、 正方形の内部 A に2点Q, R をとり、 右の図のようにして4 つの都市を結んだ方が, ケーブルの長さの総 和が短くなる場合があることがわかる。 その理由を考えてみよう。 B Q 課題学習 P R D 課題4のように正方形の内部に 2点 Q, R をとるとき, AQ+BQ+QR+CR+DR が最小となるときのつなげ方が, ケーブルの 長さの総和を最小にして、 正方形の頂点上にある4つの都市をつなげる 方法である。 2点 Q, R をどの位置にとればよいか, 座標平面を利用して考えてみ よう。 まとめの課題2 4点A(-1, 1), B(-1, -1), C(1, 1), D (11) がある。 実数 αが 0<a≦1の範囲にあるとき, 2点Q(-α,0), R (α, 0) を考える。このとき 20 5本の線分の長さの和 AQ+BQ+QR+CR+DR が最小となるようなaの植 を微分法を利用して求めてみよう。 *

回答募集中 回答数: 0