学年

教科

質問の種類

公務員試験 大学生・専門学校生・社会人

数的処理の資料解釈の問題です。 写真1枚目が問題、2枚目が解答の、選択肢4についての部分です。 この選択肢4の解答の初めに、「市場総額の対前年増加率がいずれの年も正であるから、その他の額の構成費が前年よりも増加している年をみる」と書いてあるのですが、なぜそうなるのか分かりません。

【No. 24】 図1はある国の、バイオテクノロジー市場総額の対前年増加率の推移、図IIはバイオテクノロ ジー市場総額の構成比の推移を示したものである。 これらの図からいえることとして、 確実なのは次のう ちどれか。 (%) 15 13.0 10 10 対前年増加率 0 04 (%) 100 4.6 2005 8.0 7.3 2006 2007 2008 (年) 図 I 88 80 28. 42 € 24.8 25.3 その他 43. 32 60 40 構成比 _6.9 13.9 60 17.0 農林水産品 4.1 : 24.6 22.5 20.9 40 化成品 30.9 20 20 40.1 38.8 36.8 医薬品 21.7 0 2005 2006 2007 2008 (年) 図Ⅱ 1. 農林水産品についてみると、 2005年の額の指数を100としたとき、2008年の額の指数は500を上回っ ている。 2.2005年から2008年までの化成品の額についてみると、最も小さいのは2008年であり、次に小さいの は2005年である。 3.2007年と2008年の医薬品の額についてみると、 どちらの年も前年の額を下回っている。 4.2006年から2008年までのその他の額の対前年増加率についてみると、いずれの年もバイオテクノロジ 一市場総額の対前年増加率を下回っている。 5.2007年に対する 2008年の増加額について品目別にみると、大きい順に農林水産品、その他、 化成品、 医薬品である。

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

解説して欲しいです。

当社の備品に関する次の [資料] にもとづいて、以下の各問に答えなさい。なお、会計期間は1年(決算日:3月31日) であり、期中に取得した有形固定資産に関しては年間の減価償却費を月割りにて計算する。 [資料] 1. 備品に関する事項 X5年4月1日 備品甲 (取得原価: ¥160,000)および備品乙(取得原価: ¥180,000)を取得し、 代金は小切手を振出 して支払った。 X5年10月1日 備品丙 (取得原価: ¥120,000) を取得し、 代金は小切手を振出して支払った。 X6年4月1日 備品甲を¥140,000にて売却し、 代金は現金で受け取った。 X7年4月1日 備品乙の除却を行った。 なお、 備品乙の見積処分価額は¥30,000である。 2. 減価償却に関する事項 (記帳方法: 間接法、残存価額:ゼロ) 減価償却方法 耐用年数 備品甲 定額法 備品乙 定額法 備品丙 定額法 5年 8年 4年 問1 X6年3月31日) の減価償却費の総額を解答しなさい。 ×5年度(X5年4月1日~ 問2X6年度(X6年4月1日~ X7年3月31日) の4月1日における備品甲の売却益の金額を解答しなさい。 問3×6年度の減価償却費の総額を解答しなさい。 問4X6年度の備品勘定および備品減価償却累計額勘定を完成させなさい。 なお、 総勘定元帳は、 英米式決算法により締 切ることとし、摘要欄の勘定科目等は次の中から最も適当と思われるものを選び、( )の中に記号で解答するこ と。 また、 本間においては同じ語句を複数回使用してもよい。 [語群 ] ア. 前 期繰 越 イ. 備 オ. 諸 力次 品 繰 越 ウ.減価償却費 キ. 固定資産売却益 エ. 備品減価償却累計額 ク 固定資産除却損 問5×7年度(X7 年4月1日~ X8年3月31日) 4月1日における備品乙の除却損の金額を解答しなさい。 問6 上記問5につき、 備品乙の減価償却を定額法に代えて200%定率法で計算した場合の除却損の金額を解答しなさい。 [200%定率法における償却率表] 耐用年数 8年 償却率 各自算定 改定償却率 0.334 保証率 0.07909 は7月 7 有形固定資産の貸借対照表価額に関する次の文章について、 空欄に適切な用語を記入しなさい。 備品等の有形固定資産の取得原価には、原則として当該資産の引取費用等の ( 減価償却累計額を控除した価額をもって貸借対照表価額とする。 )を含め、その取得原価から

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

A.Bの電流がcにつくる磁場はなぜ図のようになるのか教えてください。 右ねじの法則をどう使えば図のようになるんですか?

例題43 平行電流がおよぼしあう力 図のように, 3本の平行で十分に長い直線状の導線A, B, とBに紙面の表から裏の向きに, Cには逆向きに,いずれも cを, 一辺10cmの正三角形の頂点に, 紙面に垂直に置く。 A 12.0Aの電流を流す。 真空の透磁率を4×10-7 N/A とする。 (1) A,Bの電流が,Cの位置につくる磁場の向きと強さはい くらか。 (2)導線Cの長さ 0.50mの部分が受ける, 力の向きと大きさはいくらか。 指針 (1) ねじの法則を用いて, A, B の電流がCの位置につくる磁場を図示し, それ らのベクトル和を求める。 磁場の強さは. H=I/(2πr) の式を用いて計算する。 (2) フレミングの左手の法則から力の向きを, 磁場 261 発展問題 524 10cm B ので,Ha=H, である。 合成磁場は,図の右 向きとなる。 H, HB は, I 2.0 10 H=HB= = = - [A/m〕 2лr 2×0.10 π 合成磁場の強さHは, F=1JHI の式から力の大きさを求める。H=2×Hacos30°=2x10x1 08 π =5.50A/m 5.5A/m 10/3 = π 解説 F30° 電流の大きさは等しく, Cまでの距離も等しい (1)A,Bの電流がC の位置につくる磁場 A,Bは,右ねじの 法則から、図のように なる。HA,HB は,そ れぞれ AC, BC と垂直である。また,A,Bの -HB CQ H (2) フレミングの左手の法則から, 導線Cが受 ける力の向きは,AB と垂直であり,図の上 HA 向きとなる。 力の大きさFは, AQ &B 10√3 F=μolHl=(4×10-7) x2.0x -×0.50 π =6.92×10-N 6.9×10-N

回答募集中 回答数: 0