学年

教科

質問の種類

物理 大学生・専門学校生・社会人

III-1(4)を教えてください。

III. 強さの定常電流が作る磁場は、次のビオサバールの法則で与えられる。 点Sのまわりのds部分を流れる電流が点Pに作る磁場dHは、 I ds x r' 4T ¹3 (1) で与えられる。ここで、はSからPに向かうベクトルSP = r 。下の左図参照。 dH= I Sas P III-1. 強さの無限直線定常電流が軸上を、軸の正の向きに流れている場合を考える。 上の左図。 円筒座標系において、点Pの円筒座標を(p,d,z) とし、 その点での規格化された 基底ベクトルをeprepez とする。 円筒座標 (p,Φ, z) の点Pに作られる磁場H (p,p, z) は、 ed の向きであり、磁場のe, 成分, Ho は pのみに依存する、 すなわち H(p, o, z) Hs(p)e. と表すことができることを以下の手順 (1)-(3) で示せ。 = I (2) (1) 軸上の点Pに作られる磁場を求める。 点Pの座標を(x, 0, 0) とする。 軸上の点S のまわりのds部分を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 V x H = i (2) 次に、点Pがzy平面上、軸からの距離がpの位置にあるとする。 このとき、円筒 座標を用いて点Pの座標が (p,p,0) であるとする。 軸上の点Sのまわりのds 部分 を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 また、磁場の大き さがpのみに依存し、中に依存しないことを示せ。 2 (3) 最後に、 点Pが円筒座標 (p, 中, z), ≠0の位置にあるとする。 軸上の点Sのまわり のds 部分を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 また、 磁場の大きさがpのみに依存し、 中,zに依存しないことを示せ。 (4) 磁場をH, 電流密度をżとしたとき, マックスウェルの方程式の一つは, (3) で与えられる。 マックスウェルの方程式 (3) を用い, さらにストークスの定理を適用 して、円筒座標 (p, 中, z), (p > 0) の点Pにおける磁場のe, 成分, H を求めよ。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

Ⅲ-1(1)~(4) Ⅲ-2(1)~(3) を教えてください

III. 強さの定常電流が作る磁場は、次のビオサバールの法則で与えられる。 点Sのまわりのds 部分を流れる電流が点Pに作る磁場dH は、 I ds x r' 4 3 (1) で与えられる。ここで、 r'はSからPに向かうベクトルSP、 r' = r 。 下の左図参照。 dH = I S ds III-1. 強さの無限直線定常電流が軸上を、軸の正の向きに流れている場合を考える。 上の左図。 円筒座標系において、点Pの円筒座標を(p, 中, z) とし、 その点での規格化された 基底ベクトルを eps epiez とする。 円筒座標 (p,d,z) の点Pに作られる磁場H (p, 中, z) は、ed の向きであり、磁場のe。 成分, Ho は pのみに依存する、 すなわち H(p,d,z) = Hs (p)eΦ と表すことができることを以下の手順 (1)-(3) で示せ。 (2) (1) 軸上の点Pに作られる磁場を求める。 点Pの座標を(x,0,0) とする。 軸上の点S のまわりのds部分を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 (2) 次に、点Pがzy平面上、軸からの距離がpの位置にあるとする。 このとき、円筒 座標を用いて点Pの座標が (p,p,0) であるとする。 軸上の点Sのまわりのds 部分 を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 また、磁場の大き さがpのみに依存し、中に依存しないことを示せ。 (3) 最後に、 点Pが円筒座標 (p,d,z), ≠0の位置にあるとする。軸上の点Sのまわり のds 部分を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 また、 磁場の大きさがpのみに依存し、 中zに依存しないことを示せ。 (4) 磁場をH, 電流密度をżとしたとき, マックスウェルの方程式の一つは, V x H = i (3) で与えられる。 マックスウェルの方程式 (3) を用い, さらにストークスの定理を適用 して、円筒座標 (p, 中, z), (p > 0) の点Pにおける磁場のe 成分, H を求めよ。 III-2. 次に、 上の右図のように、 無限に長い円筒に強さの定常電流が流れている場合を考 える。ここで、円筒の断面は半径aの円であるとする。 円筒の中心軸を軸とする。 円筒に は強さの定常電流が軸の正の向きに, 円筒内を一様に流れているとする. (1) III-1 の結果を利用して、 円筒座標 (p, Φ, z) の点Pに作られる磁場 H (p, 中, z) は、 ed の向きを向くことを示せ。 また、 磁場のed 成分, H は p のみに依存することを示せ。 即 ち、この場合も磁場は式 (2) のように表すことができる。 (2) 円筒領域p<α及び円筒外の領域p>αにおいて、電流密度の大きさ i = i を求め (3) マックスウェルの方程式 (3) を用い, さらにストークスの定理を適用して,次の領域 における磁場のe」 成分, H を求めよ。 (a) p<a, (b) p> a

回答募集中 回答数: 0
化学 大学生・専門学校生・社会人

消失速度定数の問題です。わかる方お願い致します🙇‍♂️

容積が 1000mの部屋でクサヤの干物を焼くことにした。焼けたクサヤから発生する様々 な有害物質(悪臭を放つ成分)のうちメチルメルカプタン(化学式 CH:SH)に着目する。部 屋の温度は 298 K、圧力は990 hPaで、部屋は密閉されてかつ内部は絶えずよく撹牲されて おり、ワンボックスモデルで記述できるものとする。またクサヤを焼き始めるまではメチル メルカプタンの濃度は0である。以下の問いに答えよ。 (1) 部屋には何 mol の空気が存在しているか。 (2) メチルメルカプタンの放出速度は毎分 0.48 mg であったという。部屋に消失源が全 くないとすると 10分後のメチルメルカプタンの濃度は何 ppbv(1 ppbv= 10°)か。 (3) メチルメルカプタンの濃度は1.5 ppbv で一定になり、定常状態になったと判断され た。この部屋におけるメチルメルカプタンの消失速度定数k(s') はどれだけになる と見積もられるか。 (4) メチルメルカプタンの消失源としては(i)OH ラジカルによる化学的酸化、(ii)壁面等 への物理的吸着が考えられる。これらの作用による消失速度定数をそれぞれ ki,k2 と する。k」 および k2 と(3)で求めた消失速度定数kにはどのような関係があるか。 (5) メチルメルカプタンの濃度が1.5 ppbv で定常状態になったことを確認したうえで、 クサヤを焼くのをやめた(メチルメルカプタンの放出を止めた)。メチルメルカプタ ンの濃度が 0.1 ppbv まで低下するのはクサヤを焼くのをやめてから何分後か。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

ドブロイ波長についてなんですが 波長の整数倍nと量子数nが一致する理由ってありますか?

標準問題 子の速さを1,真空のクーロンの法則の比例定数を ko とすると, 軌道半径rはe, m, ko, v との間にはたらく静電気力を向心力として, 等速円運動をしていると考える。このときの電 を用いてア=ア] と表せる。 軌道の周の長さ 2πrは, 量子条件より, 正の整数(量子数) 20原 124 A) 必147.〈水素原子モデル〉 次の文中の「ア]から「カに適切な数式や数値を入れよ。 ボーアは水素原子の構造に関する次のようなモデルを提唱した。 n, プランク定数hおよびm, uを用いて, 2πr=_イ」と表せる。この式は,ド·プロイに よって物質波の考えが導入されて以降,「2πrが定常状態の電子の波長(ド· プロイ波長)の 整数倍である」と考えられるようになった。これらの関係から, 量子数nの定常状態の軌道 半径r,はe, m, ko, h, n, π を用いて, グカ=ウ」と表すことができる。n番目の定常状 態にある軌道上の電子の全エネルギー Enは, 電子の運動エネルギーと,静電気力による位 置エネルギー(無限遠を基準とする)の和より, e, m, ko, h, n, π を用いて, En=エ と表される。このように, ボーアは水素原子の中で定常状態にある電子は,とびとびのエネ ルギー準位をもつという仮説をたてた。 ボーアの水素原子モデルにおいて, 電子が n=1 の定常状態にあるときを基底状態, n>2 の定常状態にあるときを励起状態という。量子数nの励起状態にある電子は,きわめて短い 時間で量子数n'("'<n)の状態に移り,その差のエネルギーを光子として放出する。このと き,放出される光子の波長入は振動数条件から, 真空中の光の速さcおよび e, m, ko, h, n, n', π を用いて, ー%=Dオ]と表される。 水素原子の示す線スペクトルの観測結果から得られた輝線の波長入は,リュードベリ定数 Rを用いてー=Rー)の規則性をもつことが示されていた。 ボーアの水素原子モデ ルによるリュードベリ定数の計算結果は, すでに知られていたリュードベリ定数の値と高い 精度で一致し,水素原子のスペクトルを理論的に説明することに成功した。リュードベリ定 数 R=1.1×10'/m とすると, 水素原子の線スペクトルのうち, 可視光線領域 (3.8~7.8×10-7m)の輝線群の2番目に長い波長は, 有効数字2桁でカ 1 1 2 n Im と計算できる。 [20 九州工大 改]

解決済み 回答数: 1