学年

教科

質問の種類

数学 大学生・専門学校生・社会人

( 1) 絶対値xの範囲はどうやって決めたのですか? おそらくg (x)である分母の部分は絶対に0になってはいけないから0にならんように範囲を取っている。 でもその場合,なぜ開区間(0,π)だけでいいんですか?開区間(π,2π)でもg '(x)≠0【ロピタルの定理の【2】参... 続きを読む

13 ロピタルの定理 分析でてきたら⇒ロピタル 10563 ロピタルの定理 開いて、 0-(1-5) mil 基本 例題 057 不定形 (号)の極限① ★★☆ 以下の極限値を, ロピタルの定理を用いて求めよ。 mil (1−cosx)sinx -0 (1) lim ex-1-x sinhx-x x0 x−sinx (2) lim (3) lim x→0 x-0 sinx-x 指針 0 fin mil いずれも の不定形の極限である。 f'(x) gix). I g'ix) 0-(x-xdnie) mil (E) 定理 ロピタルの定理 αを含む開区間I上で定義された関数f(x), g(x) が微分可能で,次の条件を満たすとする。 [1] limf(x)=limg(x)=0 x→a x-a [2] xキαであるI上のすべての点xでg'(x) ≠0 '(x.doia) f'(x) [3] 極限 lim が存在する。 x-a g'(x) f(x) このとき, 極限 lim x-a g(x) x-a も存在し lim -=lim ig(x) x-a g'(x) f(x) f'(x) が成り立つ。 mil x0 0<|x| <πにおいて {(1-cos x)sinx}' lim lim ...... 【不定形の極限が現れる場合, f" (x), g" (x), f'(x), g" (x), が存在して定理の条件を満 たすならば,ロピタルの定理は繰り返し用いてよい。 詳しくは 「数研講座シリーズ 大学教養 微分積分」 の112~119ページを参照。 解答 (1) lim{(1-cosx)sinx}=0 かつ lim(x-sinx)=0 x→0 mil= nia- (x−sinx)=1-cosx+0 sinx+cosx−cos x drianil [1] の確認。 mil [2]の確認。 x→0 (x−sinx) x→0 1−cosx 0800- N Fox) cosx-cos 2x =lim ① 1−cosx x0 cos"x-sin'x=cos2x -zag() mil ここで ここでLim(cosx-cos2x)=0 かつ lim (1-cosx) = 0 [1]の確認。 x→0 x→0 もう一度 0<x<πにおいて (1−cosx)=sinx=0 [2] の確認。 ロピタルの 選ぼう! また lim a x0 (cosx-cos 2x)' (1-cos x)' 2sin2x−sinx =lim x→0 sinx [3] の確認。 =lim (4cosx-1)=3 x-0 よって,ロピタルの定理により, ①の極限値も存在して3 (1−cosx)sinx に等しいから lim x-sinx x-0 -=3 4sin2x=2sin x cosx (2) lim (ex-1-x)=0 かつ limx2=0 x→0 x-0 x=0において (x2)'=2x=0 [1]の確認。 [2] の確認。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

シュレーディンガー方程式の範囲です。 式を求める所までは分かったのですが、エネルギーの求め方が分かりません。 n=5です。 解き方教えてください。

こで、彼にはk= (c) /hとなり、波数とエネルギーの関係が決まる。 一方、=0での波動関数に対 する境界条件から、 C1=0が決まり、 また、æ=bでの波動関数に対する境界条件から、nを正の整数 (n=1,2,3,...) としてkb (d) が与えられる。よって、エネルギーEの解は各nに対応したとびとび の値 En をとり、その値は20 = になる。 22 En = 2m62 n² (5) 今、この解を使って、 近似的に1,3,5,7,9デカペンタエンにおける電子の状態を求めてみよう。 この 近似のもとでは、エネルギーの低い準位から順に、量子数n=(e)の軌道まで電子がつまっている。 こ の分子が光を吸収して、量子数n=(e) の軌道の電子が励起し、 量子数がひとつ大きい軌道 (節は (f) 個) に遷移するときに必要となるエネルギーは、以下の式で与えられる。 5 22 = 2m62 Ent1 - En (9)+1) n = 5 2n (6) これより、吸収する光のエネルギーを計算しeVの単位で示すと、(h) eVである。ただし、んん/(2m)、 b=12.0Å、プランク定数ん=6.63 × 10-34 Js、電子の質量m=9.11 × 10-31 kg、1 eV= 1.60 × 10-19 書くこと。 Jとする。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(3)について (1)より、のあとどっから出てきた値ですか? どう出てきたか分からないので教えて欲しいです。 また、どうやって赤色の式を立式したのか。 立式後の計算過程はわかるのですが、 最後の1文の式も理解出来ません。 多いですが全て教えて欲しいです。

政宗 3 単調 基本 例題 019 有界で単調減少する数列の極限 次の条件で定められる数列{an} について,以下のことを示せ。 ★★ [基本 a>2 この 1 a=2, an+1= an an 2) =(a+) (n=1, 2, 3, ....) (1) すべてのnについて an≧2 (2)数列{az} は単調に減少する。 指針 (3) 数列{a} は √2 に収束する。 指針 この漸化式はニュートン法(p.96 参照) によって構成され, 近似値 2 を与える計算方法 1つである。 (1)帰納的にa>0であるから,相加平均≧相乗平均の関係を利用する。 (3) はさみうちの原理を利用して, lim an-√21=0 を示す。 12100 解答 (1) α=2>0 であり,漸化式の形から,すべての自然数nについてan>0である。 よって,相加平均と相乗平均の関係から,任意の自然数nについて 11 = 1/2 (an + 2 ) 2 1 1 · 2 √an · 2 =√2 an+1=- an an =2√2 であるから,すべてのnについて 全体 > 「or an≧√2 ord -ano (2) 任意の自然数nについて anz anti-an= 2 = (a + 2) - 2-an -an= 両認して、 2 2an (1)より, an≧√2 であるから an = 2 2. an²≤0 ゆえに 2-an≤0 anti-an 解答 よって, an+1≦an であるから, 数列{az} は単調に減少する。■ (3) 与えられた漸化式により an-√2 より 2an an+1 1 an2-2√2 an+2(an-√2)2 S an 2an 2-12 であるから 2an √2 = 1½ (an - √2) 0≤an-√2 ≤ (1) (a-√2) よって lim (1) (-√2)=0であるから 1\n-1 2an an-√2 antl 20n -(an-√2) F=/(an-2) a) - 2 ½ £ (an-√=)) ant-2FanF liman=√2 818 an an 089-2 osan- 2 参考 lin n- 0500-12

未解決 回答数: 1
数学 大学生・専門学校生・社会人

解答のところでシャーペンで①②と書いているところについてそれぞれ質問したいです。 ①a>2のaは何を表していますか? anのことですか?? a>2がan>2のことを示しているのならばa1>2ということは理解できますが、間違っていれば教えて欲しいです。 ②なぜan-an-... 続きを読む

3 単調数列とコーシー列 25 SO ★★ 基本 例題 020 数列の発散と収束する数列の有界性 α>2として,数列{a}を次のように定める。 (本 a=a2-2, an+1=an2-2 この数列は正の無限大に発散することを示せ。 指針 数列{an} が単調に増加することを示す。 解答 収束する数列{a} は有界である。 2より a2 数列{a} が正の無限大に発散することを示すために, bn= 1 束することを示す。 このことは,次の定理により示される。 定理 収束数列の有界性 として, 数列{6} が 0 に an PD (称号の向きは変asaz 262 以下, 帰納的にすべてのnに対して an>2 単調減少 an-an-1=(an-12-2)-an-i= (an-i+1) (an-1- -1-20 よって, 数列 {az} は単調に増加する。 ancian. (+(-2) 271-2) bn=- とおくと, 数列{6} は単調に減少する。 bn 1 an また,すべてのnに対してb>0であるから,数列{bm}は下に有界である。 よって, 数列{bn} は収束するから,その極限値をβとする。 an>2より bn<- 2 21 an=12-2より1_1 (正の内に発話していること。 b2-2であるから bn-12-bn-2bn bn-12 B2=β-233 より β(β+1)(2β-1)=0 [n] 06/1/23より β+1>0, 2β-1<0 よってβ=0 [s) これはliman=∞ であることを示している。 n→∞ 参考 定理 収束数列の有界性の証明 lima=α とする。 このとき、ある番号Nが存在して, n≧Nであるすべてのnに対して N11 |an-α| <1 となる。 三角不等式により|an|-|a|≦|an-αであるから,n≧N であるすべてのnに対して|an|<|a|+1 が成り立つ。 ここで, M=max{|a|+1, |a|,|az|,......., | av-1|} とする。 このとき,Nの場合も、n<N の場合も |an | ≦M が成り立つ。 よって, 数列{an} は有界である。 注意 この逆は正しくない。つまり数列{az}が有界であっても、収束するとは限らない。例えば、 =(-1)" で定義される数列{an} は-1≦a≦1から有界であるが,振動するから収束しない。

解決済み 回答数: 1
化学 大学生・専門学校生・社会人

(3)の問題です。実験Aの18mlを回答の丸つけた部分で使えない理由を教えてください🙇‍♀️標準状態だから使えるんじゃないのか?

この分圧 48 22.4×103 molx 2.5×104 1.00x105 12 mol 22.4×103 100.5 (2) J したがって,これを標準状態 (0℃, 1.00 × 105Pa) における体積に換算 すると, 22.4×103 mL/mol X- 12 22.4×103 mol=12mL 100.木 (3)混合気体中の窒素のモル分率をxとすると,分圧=全圧×モル分率 から, 示すので つ。 0. (ウ) T- At3-1[K 分圧 7.5×104 Pa x= =0.75 全圧 1.00×105 Pa (エ) 化学式を のように 質 300×105 Paのときの窒素の分圧が" は, p" = 3.00×105 Pax 0.75=2.25×105 Pa このとき,溶けている窒素の物質量は,次のようになる。 2.25×105 22.4×103 1.00×105 24 mol 窒素 N2 のモル質量は28g/molなので,その質量は, 電離前 電離後 したがっ m 沸点上昇 じ質量モ 28g/mol× ☑ 24 2.25×105 22.4×103 1.00x105 mol=6.75×10-2g=67.5mg 別解 全圧が3倍になると, 窒素の分圧も3倍になる。 このとき, 溶 けている窒素の物質量は,(1)の3倍になるので,求める窒素の質量は, 18 28 g/mol X- 22.4×103 mol×3=6.75×10-2g=67.5mg 252. 水溶液の蒸気圧・・ 解答 アスクロース水溶液 (イ) 0.52 (ウ) 4.2×10-2 (エ) 1,800 解説(1)それぞれの溶質の質量モル濃度は,次のようになる。 14.40 g 190 電解質 253. 解答 解説 凝固点! しないこ という。 まると, 温度 (2) 冷 点を求め

回答募集中 回答数: 0