経営経済学 大学生・専門学校生・社会人 約1ヶ月前 マクロ経済 国民経済計算、産業関連分析の問題です。 答えが分からないものが多いのですが教えていただきたいです。 H22 特別区 次の表は、 ある国の経済活動の規模を表したものであるが,この場合における国民所得を示す値は どれか。ただし、海外からの要素所得の受け取り及び海外への要素所得の支払いはないものとする。 民間最終消費支出 290 1 345 2355 3 365 4 375 5 385 間 政府最終消費支出 国内総固定資本形成 財貨・サービスの輸出 財貨・サービスの輸入 固定資本減耗 接 90 120 80 70 100 税 40 補 助 金 5 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約1ヶ月前 どうしてnを無限大にしたときに0になることを証明しているんですか? f(x)=f(0) + f'(x+ 2! Rn(x) = 1! r(@s+... f(n)(0zzn (001) n! f" (0) x2 +... + 44 マクローリン展開 第2章 微 f(x) が0を含む開区間 I で無限回微分可能(すべ てのnに対してn回微分可能) であるとき, 任意のæ∈I と任意のnEN に対して 2.4 テイラーの定理 45 【解】 (1) を示す. 例18より Rm (z) = 0x n! -T” だから1章例題2より, f(n-1) (0) 0x -x-1 (n-1)! + Rn(x), |Rn(x)|= = n! || xn "ex - n! →0 (n→ ∞) f(x)は をみたす 日=日(π,n) が存在する. ここでもしRn(x)0 (n→∞)なら -> f'(0) f" (0) f(x)=f(0) + -x+ 22 +・・・ + f(n) (0) -xn 1! 2! n! +... と無限級数で表される. 右辺の無限級数を f(x) のマクローリン展開ある はマクローリン級数という(級数については6章を参照のこと)。 は証明を省略する (6章 6.4 節参照). 問21 例20の (2) (3) を示せ. 注eのマクローリン展開 (1) において,π=i0 (iは虚数単位; i = √-1) と おくと, sin π, cosæ のマクローリン展開 (2), (3) から eid=cos0+isin O が得られる.これをオイラー (Euler) の関係式という. となり結論を得る。 (2), (3) も同様に示される。 (4), (5) の証明には、 定理 12 において別の形の剰余項(コーシーの剰余など) をとる必要がある. ここで 例20 T xn (1) ez=1+ + + + n! (-x<x<∞) 問22|x|<1のとき次の級数展開が成り立つことを示せ。 ( 6章定理1参照) I 2.5 2n 1 (2) sin x = + 1 3! ・+ (−1)n-1. 5! +... (2n-1)! log 1+2=2(x+++...) 3 5 (-x<x<∞) x2n + .... + (−1)". [( 2n) ! ·+(-1)n−12 +・・・ (-∞<x<∞) x2 24 (3) cos x = 1- 2! 4! x2 (4)log(1+z)=x_ x3 + 2 3 n 1.3...(2n-3) 2.4... (2n) (−1<x≤1) (5)(一般の2項定理) | ネイピアの数とオイラー は任意の実数とする. +(-1)^- 「対数」という言葉はネイピアが導入した. オ イラーは級数 (1+m) = 1 + - a a(a-1)²+ 1 1 1 2! 1+ + +・・・+ 1! 2! ala-1)...(a− n + 1) (Iml<1) を考え、その和をeで表した.また,その数値を計算し,eを底とする対 問23|x|<1のとき次の級数展開が成り立つことを示せ. 1 (1) (1+m)2 = 1-2x+3x² -.... .+ (−1)"(n+1)x" +... (2) V1 +æ=1+zx- 1 1 2 x² 2.4 2 1.3 + 2.4.6 2.3 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 約1ヶ月前 円の問題です。下線部なのですが、なぜ2つの円の2つの交点と1つの円&直線の方程式の2つの交点が同じなのですか? 9A 385kを定数として, 方程式 k(x2+y2-5) Jot +(x2+y2+4x-4y+7)=0 ... ① を考えると, ① の表す図形は2円の2つの交点 を通る。 (1) 図形 ① が点 (4, 3) を通るとき k(16+9-5)+(16+9 + 16-12+7) = 0 よって 20k+36=0 ゆえに k= 9 これを①に代入して整理すると x2+y2-5x+5y-20=0 未解決 回答数: 1
数学 大学生・専門学校生・社会人 約1ヶ月前 至急教えて欲しいです🙏 1. 次の [1] の方法で表示された集合を [2] の方法で表せ. (1) A={0,4,8, 12, 16, 20} (2) B={1,3,5, 9, 15, 45} 2.全体集合をU= { 1, 2, 3, 4, 5, 6,7,8,9}とし,A={3,4,5,7,8}, B ={1, 2, 5, 6, 9} とする.このとき, 次の集合を求めよ. (1) A∩B (2)Ā (3) B (4) AUB 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約1ヶ月前 答えあってますか? X は実数とする。 実数全体を全体集合ひとするとき,Uの部分集合 A={x-1x5}, B ={x|-2<x<2} について、次の集合を求めよ。 {x1-1≦x<2} (1) AnB (2) AUB {x120x (3) AnB {x120x5} -2 A B (4) AnB {xx>-2-5≦x} 2345 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 約1ヶ月前 εが任意だから赤線のように置かれているのがわかりません🙇♀️ n! (2) 1.3.5... (2n-1) ーの例題については, 演習問題2で解説する 1 それでは,ダランベールの判定法で, (i) 0≦r<1の場合に、なぜ 項級数が収束するのか,その証明を入れておくよ。 (i) 0≦r<1の場合 an+1=rのとき,これを-N論法で書き換えると、 n→∞ an >0,N>0s.t.n≧N ⇒ an+1- | a n + 1 = r | << & an となる。 1-L ( > 0) とおいてもいい。 す 20 ここで, e は任意より,c= 2 これが, 証明のコツ n=N,N+1,N+2,... のとき, この部分のみを変 an+1 -r< an 2 水上より1 < an+1. 1-r -r< an 2 an+1<rt an 1 1+r 2 2 = 2 ≦R 0≦r <1より, 1≦1tr<2 1 1+r -≤ 2 2 未解決 回答数: 0
公務員試験 大学生・専門学校生・社会人 約1ヶ月前 写真のような問題で、パターンを書き出すときよくパターンの書き漏れをしてしまいます なにかコツあれば教えてください😭😭 整数 24×36×4cの正の約数の個数の最大値はいくらか。 ただし, a, b, cは正の整数であり,a+b+c=5 を満たすものとする。 5/1考え方、パターン煮ます のミス 1. 14 2.16 3.18 4.21 5.24 解決済み 回答数: 1
公務員試験 大学生・専門学校生・社会人 約2ヶ月前 解説の最初の式の分母に+150があって分子に+150がないのはなぜですか ★★ No.49 25%の食塩水がある。この食塩水から100gを捨てて150gの水を加 えたところ10% の食塩水ができた。 さらに50gを捨てて25gの食塩を 加えると,何%の食塩水ができるか。 1 15% 2 16% 318% 4 20% 522% 解決済み 回答数: 1
資格 大学生・専門学校生・社会人 約2ヶ月前 25人のクラスがあり、1対1の総当たりで自己紹介を行うことになった。ここで、教室が狭く同時に10組までしか挨拶できない。また、挨拶の1回の所要時間は0.1時間とした。この時、挨拶に延べ何時間必要か。 ↑解き方が全く分かりません。解こうとするとすごく大きな値になってしまいます... 続きを読む 未解決 回答数: 1
数学 大学生・専門学校生・社会人 約2ヶ月前 例題(2)を参考に問9の解答を教えてください。 加法定理を使うみたいです。 例題 4. (1) sin-1x=cos cos-1 (4/5) をみたす を求めよ. 1 (2) sin x+cos-1x=1/2 を示せ. 【解答】 (1) sin-1x=cos-1(4/5)=yとおくと,-/2y/2 かつ 0≦y ≦ だから 0≦y ≦ ™/2.cosy = 4/5 より x = siny = V1- cos2 y = 3/5. (2)sin1=yとおくと siny = /2/22) だから cOS (T/2-y)= siny = x. このとき 0 ≦™/2-y ≦ であるから cos-1x=/2-y=™/2-sin-1 となり,結論を得る. X 問7 次の値を求めよ. (1) sin-1 -1 /3 1 (2) cos -1 (3) tan V2 2 √3 (4) sin'(−1) (5) tan 1 -1 (6) lim tan X -1 問8 次の式をみたす を求めよ. IC (1) cos ・1 -1 x = tan √5 (2) sin 問9 tan 1 -1 +tan を示せ. 2 3 4 3-5 -1 = tan X 解決済み 回答数: 1