学年

教科

質問の種類

物理 大学生・専門学校生・社会人

107番についてです (2)まで正解です (3)以降で自分が書いてることのうち何を間違えているのか指摘してほしいです 習っている先生が合成容量を使わない方針なので、その方針で指摘していただけると助かります

72 た。極板間の電場,電位差,静電エネルギーはそれぞれ何倍になるか。 (センター試験 + 福岡大) XX (4)(3)に続いて、極板と同形で厚さd.比誘電率2の誘電体を極板間に 入れた。 極板間の電位差 V, を Vo で表せ。X 3/16 100 間隔 だけ離れた極板 A,Bからなる電気容 4305/1 量Cの平行板コンデンサー, 起電力 V の電池と スイッチSからなる図1のような回路がある。 まず, スイッチSを閉じた。 A V B 図1 ○○(1) コンデンサーに蓄えられた電気量はいくらか。 (2) このときの極板Aから極板Bまでの電位の 次に,スイッチSは閉じたまま、厚さの金 属板Pを図2のように極板 A, B に平行に極板 間の中央に挿入した。 A V P B 図2 変化の様子を極板Aからの距離を横軸としてグラフに描け。 (3)また,このとき極板Aに蓄えられた電気量はいくらか。 (4)さらに,スイッチSを開いた後,金属板Pを取り去った。このと きの極板間の電位差 V' ばいくらか。 メト (5) Pを取り去るときに外力のした仕事 Wはいくらか。 6/19 X(3) C, にかかる電圧はいくらか。 _X (4) C2 に蓄えられる電気量はいくらか。 × (5) 抵抗Rで発生したジュール熱はいくらか。 108 起電力が V で内部抵抗の無視できる電池 E, 電気容量がCの平行板コンデンサーC, 抵抗値Rの抵抗R, およびスイッチSを接続 した回路がある。 G点は接地されており,そ の電位は0である。 はじめSは開いており, コンデンサーに電荷は蓄えられていない。 E 電磁気 73 (京都産大) R (a) まずSを閉じ, Cを充電する。 Sを閉じた瞬間に抵抗Rを流れる 電流は(1)である。 (b)Sを閉じてから十分に時間がたったとき,Cに蓄えられている静電 エネルギーは (2) である。またこの充電の過程で電池がした仕事 は(3)であり、抵抗Rで発生したジュール熱は(4)である。 (c)次に(b)の状態からSを開いた。最初Cの極板間隔はdであったが、 極板を平行に保ったままゆっくりと2dに広げた。このときA点の である。 また極板を広げるのに必要な仕事は(6) とされる。 電位は (5) であり,極板間に働く静電気力の大きさ(一定と考えてよい)は (7) (近畿大 + 防衛大) (愛知工大 + 静岡大) R S2 109 極板 A,Bからなるコンデンサーがあり [電荷 Q [C] が充電されている。 極板は一辺の長 さが〔m〕の正方形で,極板間隔はd[m] であ ある。 極板間は真空で, 電場 (電界) は一様とし、 真空の誘電率を co〔F/m〕 とする。 [+] [Q] -Q 図 1 +Q A 107 図はコンデンサー Ci, C2, C3 (電気 容量はそれぞれ C, 2C,3C) 電池 (起 電力V) およびスイッチ S. S2と抵抗R からなる回路である。 最初, スイッチは どちらも開いており、いずれのコンデン サーにも電荷はない。 I. まず, スイッチを閉じ, C, と C2 とを充電した。 _ (1) C, に蓄えられる電気量はいくらか。 (2) C2 にかかる電圧はいくらか。 Ⅱ.次にS」を開いてから,S2を閉じ、十分に時間がたった。 A,B間に, 図2のように誘電体を挿入する。 誘電体は一辺1 [m] の正方形で,厚さd[m] 比誘電率 e, である。 誘電体をx [m]だけ挿入し たとき, 誘電体部分の電気容量は (1) (F) であり,真空部分の電気容量は (2) [F]だ から,全体での電気容量は(3) [F] となる。 x -Q 図2 2.

未解決 回答数: 1
物理 大学生・専門学校生・社会人

この問題の30〜36を教えてください。 2枚目はv(t)とx(t)の答えです

II page-3 以下の文章の空欄に当てはまる数値または選択肢をマークせよ。 なお、番号には 「① +, ② ③ 値が0なのでどちらでもない」 のいずれかを選択して解答すること。 単位が明記されていない物 理量はすべてSI単位の適切な基本単位もしくは基本単位の組み合わせによる組立単位を伴っている ものとする。 軸上を運動する質量3kgの物体に, 速度でに依存する抵抗力F-6(vv) が作用している。 時 刻t=0において,この物体は0の位置にいて 204m/sの速さでz軸の正方向に運動していたと する。この物体の運動方程式として適切なものを以下の選択肢からすべて選ぶと 21 となる。 (選択肢) dax dv d²v ①3- = -6(V) ②3- = dt -6(√)335 = dt dt2 =-6(VD) ④3- =vo - 6(√)³ dv dt ⑤ 3 =vo-6(vv) ⑥ z=-vot- (vo)342 ⑦ dt この運動方程式は, 変数分離を用いると, dv 03/2 = 22 23 1 I= =vot- (viit2 dt. と変形でき, 両辺の積分を実行して、 初期条件を用いることで, 24 v(t) = 26 (1+25t) と求まる。 また, 時刻における物体の位置z (t)は, 27t x(t) = う 1 + 28t となる。これらの結果から,この物体は無限に時間が経過したときに= 29 の位置で止まること が分かる。 物体がx=0からある点=Xまで動く間に抵抗力Fがする仕事Wは, 抵抗力Fを物体の動き方に あわせてで積分することによって求まるから, W = = √³ Fo X Fdx, を計算すればよいが,この計算を実際に実行するためには, 積分変数を位置から時刻tに変換して 時刻t=0から物体が=Xに到達したときの時刻t=Tまでの間にFがする仕事を求める式に変形 するのが便利である。 dr = v (t) dtに注意しつつ, 置換積分を利用してこの計算を行うことで,Wを 3132 求めることができる。 例えば, t=0からt=1/2までの間にFがする仕事は [30] - である。 33 方, 物体がt=0から29で止まるまでにFがする仕事は, T∞の場合のWを考えればよく, その結果は W=343536となる。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

シュレーディンガー方程式の範囲です。 式を求める所までは分かったのですが、エネルギーの求め方が分かりません。 n=5です。 解き方教えてください。

こで、彼にはk= (c) /hとなり、波数とエネルギーの関係が決まる。 一方、=0での波動関数に対 する境界条件から、 C1=0が決まり、 また、æ=bでの波動関数に対する境界条件から、nを正の整数 (n=1,2,3,...) としてkb (d) が与えられる。よって、エネルギーEの解は各nに対応したとびとび の値 En をとり、その値は20 = になる。 22 En = 2m62 n² (5) 今、この解を使って、 近似的に1,3,5,7,9デカペンタエンにおける電子の状態を求めてみよう。 この 近似のもとでは、エネルギーの低い準位から順に、量子数n=(e)の軌道まで電子がつまっている。 こ の分子が光を吸収して、量子数n=(e) の軌道の電子が励起し、 量子数がひとつ大きい軌道 (節は (f) 個) に遷移するときに必要となるエネルギーは、以下の式で与えられる。 5 22 = 2m62 Ent1 - En (9)+1) n = 5 2n (6) これより、吸収する光のエネルギーを計算しeVの単位で示すと、(h) eVである。ただし、んん/(2m)、 b=12.0Å、プランク定数ん=6.63 × 10-34 Js、電子の質量m=9.11 × 10-31 kg、1 eV= 1.60 × 10-19 書くこと。 Jとする。

回答募集中 回答数: 0
1/11