学年

教科

質問の種類

物理 大学生・専門学校生・社会人

なぜ右の問題では熱量保存則が成り立つのに、 左の問題ではマーカー部の式が成り立たないのでしょうか

チェック問題 2 融解熱 標準7分 水の比熱を4.2J/(g·K), 氷の融解熱(1g融かすのに要する 熱)を336J/gとする。また容器の熱容量は無視できるものとする。 (1) 温度80℃のお湯に温度20℃の水を加えて, 30℃の水6.0Lを つくるには,それぞれの温度の水を何Lずつ混ぜればよいか。 (2)(1)でできた水に0℃の氷を入れたら,20℃になった。氷の 質量は何kgあったか。 解説 (1)(比熱の解法》(p.249)で解く。 図aのように、質量 m,[g], m,[g]を仮定し, 「温度図」 をつくる。 容器の熱容量は無視するので, 容器の熱の出入りは考えてはいけないよ。 吸収熱,放出熱は、 Qm=4.2×m,× (30-20) Qout=4.2×m,× (80-30) 「混合系」なので, Qm=Qoutより. 4.2×m,×10=4.2×m;×50 一方,m,+m,=6000gと合わせて. m,=5000g=5.0kg. m;=1000g==1.0kg よって,20℃の水は5.0L, 80℃の水は1.0L 図bのように、質量 m[g]の氷は,まずア溶ける。次に. ① 20℃まで上昇する。もちろん容器の熱の出入りは無視できる。 Step2 氷が得た熱の和は, Step1 Step2 80℃水m. [g) S Qo。 Step3 -30℃ in 20℃ 水m, [g) Qm 図a 答 (2) Step1 30℃ 水6000g Q=336×m+4.2×m×20 2out -20℃ 氷が溶けたら 水の比熱になるので 1g溶かす熱 0℃水m[g]水 水が失った熱は、 Qout=4.2×6000×(30-20) 「混合系」でQm=Qout 図b Step3 より、 336×m+4.2×m×20=4.2×6000×10 よって, m=600g=0.60kg… 252 物理基礎の熱力学

解決済み 回答数: 1
化学 大学生・専門学校生・社会人

熱力学について質問です。 問題文の一定の外圧1.00atmをどう扱ったら良いかよく分かりません。自分でとりあえず解いてみたんですが合ってる自信あまりないです。もし分かる方いらっしゃいましたら、ご教授していただけませんか?🙇‍♂️

Problem 2 A sample consisting of 1.00 mol of perfect gas molecules at 300 K is expanded isothermally from initial pressure of 3.00 atm of a final pressure of 1.00 atm against a constant external pressure of 1.00 atm. Determine the values of q, w, AU, AH, AS, ASsur, and AStotal. 300Kにある完全気体 1.00mol の試料が、 温度一定で始めの圧力 3.00 atm から終わりの圧 カ 1.00 atm まで、一定の外圧 1.00 atm に抗して、 膨張する。 この過程に対して、9, w, AU,AH, AS, AS r, ASiosal を求めよ。 管品可運勝張より、Tが喫化しないためるリ=D 始めの体様をV終わりの体殊をソュとおくと. V, = 8.314× 300 スH- AU + PAV 1660 [コ] 1660 8.21×(o°[m] AS = = 5.53 [h] 300 ニ 3×1, 013 × /D" Vz = 8.314x300 1.013× [0 外界が理た熱置はdisur = -AHよ) = 0.0276 [m] ASsur- 「desur T 1660 300-5.53[7h] Pdv = -1.013 x /0°x (0.0246- 8.21Y16') - こ M AStotal こ AS + ASU- = -1660 LJ] AV= 9+ W より 1 - -w- 1660[5] 0 Problem 3 Calculate the change in the molar entropy at 1 atm when a solid ethanol at 159 K of the melting point changes

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

流体力学の基礎方程式の中の状態方程式です。 写真2枚目の(4.3)の式がわかりません。 テキストではいきなり結論だけが書かれています。どのようにこの関係式を導出するのかわかりません。 どなたかよろしくお願いします!

} S4 状態方程式 15 ある. これに反して, 気体のような縮む流体では 密度pが未知 数であるから, 吉先および運動の方各式のはかにゃに ぅ 1 ン関係式を求めみなければならない. 8S4 状態方程式 ここでいよいよエネルギーの保存を考える段取りであるが, そのためには熱力学的な考察が必要である. これは。エネル ギー保存則というのは熱力学の第 1 法則にほかならないこと を考えれば, 容易になっとくのいくことであぁろう. そこでわ れわれは, 流体がエネルギー保存の法則を満足するという事 実を別な言葉で表わして, “流体は熱力学の法則にしたがう? と述べることにする. そうすれば, たとえば一定温度の外界 にさらされながらゆるやかに流れる流体では, 状態変化は等 温的におこるであろう. また, ふつうの和気体のように粘性や 熱伝導性の小さいばあいには, 粘性によって発生する熱(軍 動エネルギーが変換するもので, 摩擦熱に相当する) や, 温 度差に応じて伝導される熱は非常に少いから, 状態変化は断 0すなわち等エントロピー 的におこるものと考えられる. 上2のの気体では・ 理想気体の仮定が非常によ ご 人922れ・ る. それゆえ, 状態方程

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

答えはありません😅 分かる部分だけとかでもいいし、ヒントでもいいので 教えて頂けるとありがたいです!

olる年度 熱物理党の 3 長 エコンー ダー 1/2 のスピンは。 友環万 の中に置かれると。奄場の向きか、胡場 友和時の向きかのどちらかの状態のみをとる、 1つのスビンに宙を写えて の 1 また1によって2っのを zooweeと| とすると。 スピンの各状態のエネルギーは og でえられる、このようなス ピン 個からなる系 (:番日のスピンの族文を o。 とする) が。下変の包に打 しでいるとき, スピンは世いに衝立であるとして天の周いに短えよ、 G) 1人のメスビンがを向く (= 確率およびを向く (o ニー 和叶を表 | ゅょ. (2) (1) の確率分布によってのの平均値を求めよ。 | (3) 仙のスピンの系について。後化 Af 三 V(y) を求めよ。 ] (9 系のハミルトニテン (エネルギー) は 1 メーニーpge でほえられる。 エネルギーの立人の間信存性を求めよ (6) 比較の温度人性を求めよ。 エネルキーがーg。 0 の3つの状態のみをとる妥が、流度了の針に 1 個の村拉について, の回いに答えよ・ よ をまめょ。 | き(A5*) = (5-(5))) = (の ーのゆらきの大きさとの隊係を示せ、 | noeー0.12.3…)でそま ブランク拓動了の系をえる・ IM1) を示めょ. で| 個の採動了の系の分思関、 ーをまめょ. 護 エネルキー. 色を|

解決済み 回答数: 1
2/2