学年

教科

質問の種類

数学 大学生・専門学校生・社会人

やさしい理系数学例題3(2)整数分野の証明問題です。 模範解答の意味は理解できますが、16で割ったあまりで分類しようと考えるに至る過程がわかりません。

あり、その最大数はab である。 この定理について興味のある方は, 「ハイレベル理系数学」の例題3と演習問題 14 を参照されたい. 例題 3 正の整数a,b,cが a+b2=c2 をみたすとき,次の (1), (2), (3) を証明せよ . (1) a, b のいずれかは3の倍数である. (2) a,b のいずれかは4の倍数である. (3) a,b,cのいずれかは5の倍数である. 考え方 任意の整数は, 3m, 3m±1 (mは整数) などの形で表せる. 【解答】 (1) 任意の整数は3m,3m±1 (m∈Z) のいずれかの形で表せ, (3m)2 = 0, (mod3) (3m±1)²=1. よって, a, b がともに3の倍数でないとすると, ∫(a2+62)÷3の余りは,2 lc²÷3の余りは, 0,1 であるから, a2+b2=c2 となり矛盾. ゆえに,d2+b2=c2 のとき, a, 6 のいずれかは3の倍数である. (2) 任意の整数は 4m, 4m±1,4m+2 (mez) のいずれかの形で表せ , (4m)²=8.2m² = 0, (4m±1)²=8(2m²±m)+1=1,9, (mod16) (4m+2)^2=8(2m²+2m)+4=4. よって, a, b がともに4の倍数でないとすると, 背理 (a²+62)÷16の余りは, 2, 5, 8, 10, 13 lc²16の余りは, 0, 1,4,9 (5m)2 =0, (5m±1)' = 1, (mod5) (有名問題 ) (5m±2)²=4. よって, a,b,cがすべて5の倍数でないとすると, (終) なぜood 16 で分類しょうと 考える 光に平方数で割った余りを であるから, a+b2=c2 となり矛盾. ゆえに,a+b=²のとき, a,b のいずれかは4の倍数である. (3) 任意の整数は 5m,5m±1.5m±2(m∈Z) のいずれかの形で表せ, (終)

未解決 回答数: 1
化学 大学生・専門学校生・社会人

これ古いのが2.65×10^4なのはなんでですか? 14日後に測定したなら新しいものではないんですか? わかる人教えてください😣

取るのか、 結晶場理論に基づいて説明せよ。 Cobalt (元素記号 Co) は9族の元素であり、 フッ化物イオンは弱結晶場配位子である。 【構造】 ( 幾何学的構造がわかるように描くこと) (2点) 【説明】 (4点) F Na3 【d 電子数 】 【電子配置】 (2点) Fi..... F E Co 0.F 'F en 2 1.800 x 10-4 ヨー 薬科大学 (O 6 (2) ma → mf1 Q + ( B ) 17 1799 1 規則としては、平行スピンをそれぞれ入れていくが、 (↓各1点) 弱結晶場配位子より結晶場分裂はさいので↓は小さい 従って、電子が入りやすくなるためdidにも電子が入る 2. 次の形式的な核化学反応式を完成させ、放射壊変形式の名称を答えよ。 (n, m は正の整数。 X, Z, A, Q は元素記号とする。) (1) X + (_ _je)→ miZ 電子捕獲 (EC 壊変 ) β粒子放出(β壊変 ) 1 14日 × 24時間/日 × 60分/時間 ++ dz2 ⑩ dx2-y2 dxy dyz dzx = 3850 験教室 座席番号 学年 書き方が変でも八面体で あることと Na が3つ付 いていることがわかるも のは丸にしました。 3. 新しく単離した Y の試料は、 毎分100×10°壊変の放射能を示した。 14日後の同時刻にその放射能を再測定したとこ ろ、 毎分2.65×104 壊変であった。 (1) Y の放射壊変の速度定数 (単位:分) を求め、 有効数字3桁で答えよ。 (式2点、 答1点) 【式】 ⑩ 新 (2点) クラス ん x lk 【答】 (2) Y の半減期 (単位:分) を求め、 有効数字3桁で答えよ。 (式2点、答1点) 【式】 F-は弱結晶場配位子であり、この配位化合物の結晶場 分裂は小さい。 したがって、より高いd軌道へ電子を昇位させるエネ ルギーが小さいため、 平行スピンの数が最大となる図の ような配置をとる。 (教 P.591) (下線部は、「同じ軌道にある電子同士の反発を避けて」 などでも可) 電子獲得だの電子放出だ のいろいろありました が、 よほどおかしなもの 以外は丸にしました。 【名称】 1.00 x 106 2.65 x 104 余計なことが書いてあっても(それが間違いでなければ) 丸にして あります。 (1) の答えを分母に代入で きていれば丸にしました。 【名称】 1.800 x 10-4 学籍番号 -1 lm2 0.693 ^ 7/20 F 【答】 氏 名 =ît 1.80 x 10 分 3850 分も丸にしました。 3.85 x 103 分 189999 ほげら木ふが夫 採点欄 20

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

解ける人解いて教えてもらえたりしませんか?😭 解き方を知りたいです。

[5] 行列 A = の固有値と固有ベクトルを求める。 すなわち, Aæ= 入z を満たす実数 入と, 入に対応するべ クトルæ≠0を求める. Ax = 入 は 50 = [57] と変形される. 仮定よりæ≠0 であるので, [56] の逆行列は [58] が導かれるからである。従って, [56] の [60] は [61] であるこ 0 [[90]] 8 [63] [64] = 0 が得られる. これを解いて,固有値入= [65] 10 2 なら, とがわかる. [56] の逆行列が [59] ならばæ www これより、 固有方程式 入 + [62]入一 を得る. 3 4 [56] [57] 選択肢 0 (A-X) 1 (A - λx) ⑤0 (※スカラーの零) ⑥6 0 (※ ベクトル) 存在する [58] |~ [61] 選択肢 (同じ番号を繰り返し用いて良い) ⑩ 行列式 ① 対称行列 ② 逆行列 ⑥⑥ 存在しない 77零 以下, 求める固有ベクトルをæ= ⑩ ●入= [65] のとき, Aæ= 入æは唯一つの方程式æ1+ |[67] [68] (2) ● 入 = - [66] のとき,同様にして, 固有ベクトルæ= ち [69] 選択肢 次のページへ続く. (A – AI) ⑦○ 21 とおく. X2 ① 100000 に対する固有ベクトルはæ= 169 (これを」 とおく) である. [68] [67] [67] [68] ② (3) X [67] ③ 直交行列 ⑧ 零ベクトル 1 [70] [71]| -3 A [68] 3 32=0 と同値となる。 従って, 固有値入 = [65] 2 4 x (9) I ④ 転置行列 ⑨ 零行列 ③ (これを2 とおく) を得る. [66] 5 [68] |[67]

未解決 回答数: 0