学年

教科

質問の種類

物理 大学生・専門学校生・社会人

マーカーのa(k)はa_H(k)をあらためてa(k)と置いてるということですか?

Xしていく: p) == a'(p)|0), |p,p2) = a'(pi)a'(pa)|0), このようた 態全体は,個数演算子·運動量演算子(I.8節)の固有ベクトル系と」 場の演算子の時間発展を生成消滅演算子によって表現するために,ハイゼン 完全系を構成する.より詳しく言えば,{|0), Ip.…pn) }(n=1,2,.. は,基底として一つのヒルベルト空間(Hilbert space)を張ることにから 量子力学·場の量子論で重要な役割を果たすこの空間と基底は,それぞ。 フォック空間(Fock space),フォック基底(Fock basis)と呼ばれている 必要な手続きは以上だが,上記 (3) には重要な事実が含まれている.すなに ち、{|0), Ip…p,)} が完全系ということは, 任意の物理的状態 ) が n -/IFk, |k,… k,) (ks… k,) (II.31) n=1 =1 と展開できるということである.この展開式は, 「多体系の量子力学と場の量子 論の同等性」も示している.つまり, 右辺の展開係数 (p,.…P,)は, n粒子 系の(運動量表示) 波動関数に他ならず, 従って, )による状態の「場の量子 論的な記述」は,1粒子波動関数, 2粒子波動関数, の総体による「量子力 学的な記述」と同等という訳である。 I.6 場の演算子の時間発展 る ベルク描像に移行しよう. このときゅは 中日(x, t) = e(-o) do(2)e-iH(t-to)

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

マーカーと矢印のところがわかりません、教えてください http://www.yam-web.net/science-note/AM.pdf

導出2 http://hep1.c.u-tokyo.ac.jp/-kazama/QFT/qh4slide.pdf 「量子力学/場の量子論 /Noether の定理」参照 SL Lagrange 微分: を次のように定義する。 SL Te (6,4) OL 8p SL OL 三 p OL 場の運動方程式: =0 次の無限小変換を考える。 x→x'=x+4x (x→x=x"+ Ax") p(x) → p(x) = ¢(x) + 4¢(x) 4は total change(¢(x) からの差分)を表す。 また、中(x)は、(x)= ¢(x) + Ax" 6,¢(x) でもある。 中(x) は場を少しだけ変形したもの、次の項は位置を少しだけずらしたときの差分。つまり、場の形の微小変 化による差分+位置の微小ずらしによる差分= total change となる。 Lie 変分:同一座標点での場の形の変化を Lie 変分と呼びるで表す。 るp(x) = ¢(x) - (x) 上の中(x)に関する2つの式より、 Sp(x) = ¢(x) - (x) = 4¢(x) - Ax" o,¢(x) すなわち total change 4¢(x) は、A¢(x) = ō¢(x) + Ax" o,¢(x) となる。 (x地点では、ふ(x)= ¢(x') - ¢(x') ) 作用S=Jd'xL(¢x), a,4(x))の変化を求める。 S'=[dx L(¢), 6.f(ax)) まず場の変化をx'での Lie 変分で書き表す。すなわちゅ(x) = ¢(x) + 5p(x) 等々。 すると、微小量の一次のオーダーまでとって S'=[dxL(ec). 6,4)+Jd'x( + L -6,54) 第1項をxでの表式に書き換えると、 Ja'r La) =[dxL) d'x=dx =Jdx(L) + Ax" 6,1 ) ヤコビアンは次のように計算される。行列 MをM,= 0, Ax° と定義すると、 TOPページ(総合目次)へ 全文検索は Ctrl+F 11 = detl1 +MI = expTrln(1 + M) ~expTrM~ 1+ 6Ax" OL S'=Jd'x(1+ 0Ax°)(L+ Ax" 0,L + 6,6) ("e)e - 5p T9 この一次近似は、 SL L L -Sp+ 6(- SL 三 6¢ OL =[dx{L+6.(ax" L) + - るみ)} a(6,4) 0.4) =Jdx{L+ + T2 p+ Ax" L)} (0,p) 8p S-S=[dx +s T9 るp+ Ax" L)} - Ja'xL=S 8p (e)e、 =Jdx{e"+ SL ここでは、デ= OL - み+ Ax" L 6,4) SL ゅ= 0 8p 8L L T9 場の運動方程式 8p =0より、 " a(6,4) L L るp+ Ax" Lとしたが、j"= - a(0,4) - 5ゅ - Ax" Lとおいてもよい。) 6j"= 0 (j"=

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

(2.1.1)をどのように展開すれば(2.1.4)になるんでしょうか

2.1 ラグランジュ形式 解析力学の2つの形式,すなわちラグランジュ形式とハミルトン形式についてその 特徴を述べ,両者の関係を考察するのが本章の目的である). まず,ラグランジュ形式から始める. ラグランジュ形式は独立変数として一般座標 g'を用いて記述されるが, ラグランジュ関数Lはgとずで表される。そして, 外的 拘束条件のない場合は, ラグランジュの運動方程式は前節で述べたように d OL TO = 0,(i=1~ N) dt(0g Og' である。これは gi の時間に関する2回微分方程式であり, 一般には N個の独立な方 住式糸である.したがって, これらの方程式を解いて運動を求めるとき, 初期値 g' と 9の両方を指定して運動が一義的に決定される. すると, 力学系の状態を指定するの は9とであるといえるから, g'とがとを変数とする空間を考えると都合がよい。 このような2N 次元空間を状態空間、あるいはハミルトン形式の位相空間(phase *pace)と対応させて, 速度位相空間(velocity phase space)という。 そこで,速度位相空間の座標を(g',g) で表すことにする.は速度 に対応す る変数であるが, gi は一応q' とは別ものとして扱い, q' の時間微分であるfと区別 注*)本章以下,ラグランジュ関数 Lおよびハミルトン関数H は時間を陽に含まないとする.時間に 顕わに依存する場合も, OL/0tの付加項が付くだけで, 以下の考察は本質的に変わりはない。 15

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

教えて下さい。

@ *Wx で全沖 73%箇8:11 【問 1】 熱容量 Cし, C。 が一定の理想気体を, 図のような, 2 つの断熱準静的過程と, 2つ ア の等積過程によって作られるサイクルを考える. 以下の問いに答えよ. ただしッ= デー を比熱比とする. (第2 回レポート 【問1】 も参照すること) (1) 過程Aつ B.BっつっC,CっつっD.DつA, および1サイクルでの, エントロピーの変化 量を, それぞれの状態における温度 アア4.7ぉ,7C,7p を用いて求めよ. (2)て(7) は, ガソリンエンジンを想定した以下の設定で解答せよ. ガソリンの燃焼温度を 7 = 20007C, 外気温を 7 = 27?C , 空気の定積熱容量 Cr = 1.3JK 比熱比々= 1.4, 燃焼室の容積 編 = 150 cm?, 燃焼室 排気量容積 O 1 =1500 cm3 とする. また, 過程 B つ C では, 温度 77 との熱源から, 過程 D つ A では, 温度 7記 からの熱源から熱の出入りがあるものとし, それ以外の熱源は存在しないものとする. (2) 7ぉ。 7の を求めよ. (3) 過程Bつ C での放熱量 gc, D つ A における吸熱量 Qp。 を求めよ. 3 (4) 1 サイクルでの仕事を求めよ. (5) 3300 rpm での出力を求めよ. (3300 rpm=1 分間に 3300 サイクル) グ ) ) (6) 過程BつC におけるエントロピー生成1 Sco, D つ A におけるエントロピー生成 SpA を求めよ. (7) この熱機関の作業物質と, 2つの熱源を合わせた系*? について, 1 サイクルでのエントロピー変化を求めよ.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

なぜ、黄色で囲ったところのような式が出るのか教えてください!

昌 回渡の波融 ュ導位 これまでは, 一直線上を伝わる ( 波に (eeで(は 波について学んた に 面上を伝わる波について考えよ 6 回19 小波画 水面上の 1 点を振動させると, 当 波源を中心に円形の波紋が広がる( る(軌19紀でのとき, 同じ では振動の状態, すなわち位相が等しい。 これらの位相が等し ねた面を 波面 といい. 波が平面になる波を 平面江。 wave front 2 なる波を 球面没 という。波面は波の進む向きと常に垂直であ< spherical wave 水面上の 2 点を振動させると, これらの点を波源とする波が広が る(図 20)。このとき, 山と山(谷 と谷) が重なりあう場所は振幅が 大きくなる。また, 山と谷が重な りあう場所は, 振動を弱めあう。 四20 水画洲の証渉 ---は螺めあう を結んだ線の一部を示した。 このように, 波が重なって振動を 強めあったりめあったりする現象を 波の干渉 という。 図21 をもとにして, 強めあう場所と, 時めあう場所の条件を式で表 そう。 振幅 4 で同位相(一方が山のとき他方も山。 一孝が谷のきき他方も倒) で振動する 2 つの流源Su。 S。 から出る波の波長をえとずる波源S, S。 (MM ぁ とすると, 距離の差は | と家す 渉の条件は次のようになる。 強めあう点 : |』ー叫4=2mX今 選めあう点 : |』ー引 =+計4=(2w+1) x誠 0 AS 5 若 で さ破線 | ) は, 波源 Q。 5。 を点とする双曲線となる。 また, 法旨 * 出 っ>

解決済み 回答数: 1
1/2