学年

教科

質問の種類

物理 大学生・専門学校生・社会人

物理の力学の問題について質問です。 過去問を解きたいのですが全く答えが分からないため、解いて頂けないでしょうか?

物理学 ⅡⅠ 期末試験 問題用紙も回収します。 選択式の問題は、正しい選択肢を記号で記すこと。 記述式の 問題は、解答だけではなく、 解答に至る考え方も書くこと。 ベクトルはそれとわかる よう書くこと. ① 質量mの質点の位置ベクトルを、運動方程式を Fとする。 (1) 質点の原点のまわりの回転の運動方程式を導出せよ。 (2) 外力Fが中心力のとき、 角運動量が保存することを示せ。 (3) 質点が (x,y) 平面内を運動する場合、 原点のまわりの角運動量を極座標 (r, Φ) を用いて表せ。 2② 軽い針金でできた一辺lの立方体の枠がある。 1つの頂点に糸をつけ、隣接す 頂点P1, P2, P3 にそれぞれ質量 mi, m2, m3 のおもりをつけて吊り下げたとこ ろ、静止した。 重力加速度ベクトルをg とし、 OP = r. (i=1,2,3) とおく。 7₁ g↓ (1) 系の重心 (質量中心) Gの位置ベクトルrc をri を用いて表せ。 (2) 重力は重心Gに働くとしてよいことを示せ。 (3) 糸の張力の大きさを求めよ。 (4) 重心G と支点は鉛直線上に並ぶことを示せ。 (5) OP が回転軸のときの慣性モーメントI を求めよ。 (6) P1P が回転軸のときの慣性モーメントⅠ'を求め よ。 3 固定軸のまわりで回転する剛体を考える。 剛体の質量をM,重心GとOとの距離をん, 剛体 の軸Oのまわりの慣性モーメントをIとする。 図 のようにx,y,z軸を取り、 剛体の運動を偏角めで 表す。 重力加速度をg とする。 x P3 Ø R 2₂ G Mg P2 P1 (1) 回転の方程式として正しいものを選べ。 do (a) IapzMgh cos o (b) latMghsin o (c) IamMgh cos o (d) apzMgh sino (2) 運動は微小振動であるとする。 周期Tとして正しいものを選べ。 Mgh (a) 2 I I 9 (b) 2 Mgh 2ヶ (c) 21 (d) 2π√√ h 9 (3) 運動は微小振動であるとする。 初期条件として、角度だけ持ち上げて静か に離した。このときの重心の運動として正しいものを選べ。 但し以下では、 は微小振動の角振動数を表す。 (a) r(t) = hoo cos(ft), y(t) = h (c) π(t)=hdo sin (St), y(t)=h (e) x(t)=hdocos (ft), y(t)=hdo sin(St) (b) x(t)=h, y(t)=hdocos (nt) (d) π(t)=h, y(t) hdo sin (St) = (4) 前間の重心運動に対応した回転軸Oに働く抗力 R = Rzex + Ryey として正 しいものを選べ。 (a) R=-Mg, Ry=MhQdocos (t) (b) R=0, Ry=MhΩ2 do sin (nt) (c) R-Mg, Ry=0 (d) R=MhQ2 do cos (St), Ry=MhΩ do sin (Qt) (5) 安定に静止した状態で、 剛体に角速度ω を与えた。 この場合の力学的エネ ルギーEの値として正しいものを選べ。 但し位置エネルギーの基準点は0と する。 (a) E = 0 (b) E=Mgh (c) E-Mgh (d) E ==Iw (e) E ==Iw+Mgh (f)=1/2Iug-Migh (6) 前問の初期条件の下で、 剛体が1回転するために必要な角速度wo の最小値と して正しいものを選べ。 (a) 0 (b) √20 (c) 2Ω (d) 4Ω (7) 回転軸の位置、 すなわちんの値を変化 させたときの慣性モーメントIの変化を 表すグラフとして正しいものを選べ。 -h A" (b) $+) (d) ・h

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

わからないです

2. 最近、太陽系以外にも惑星系が続々と発見されている。これらの惑星系に生命が存在しているか どうかはまだわかっていない。 地球に存在するような生命が発生するためには、液体の水の存在や適度な表面温度が必要である と考えられる。将来、これらの惑星系に生命が発見されれば、生命発生の条件がより明らかになる と期待される。 仮に2つの惑星系(惑星系 P と惑星系 Q)のうち、惑星系Pの内側から数えて2番目と惑星系 Q の内側から数えて4番目の惑星にのみ生命が発生したとする。ブライアン博士は個々の惑星を内側 から順に P1, P2, P3… 及び Q1, Q2,Q3... と番号をつけて、生命発生の条件を理論的に考察してみた。 (1) ブライアン博士は「惑星の表面温度がある範囲にあれば、必ず生命が発生する」という仮説 を立てた。この仮説が惑星系 P と Qで成り立っているだろうか。惑星系 P と Q の個々の惑 星の表面温度を次の図1に示す。ここで、生命が発生した惑星 P2 と Q4 は白抜きの記号で表 す。ブライアン博士の仮説を否定する条件を、下から一つ選べ。 表面温度 (°C) 350 300 250 200 150 100 50 -50 - 100 - 150 △ 1 U 1 1 2 3 4 5 6 7 惑星の番号(内側から7番目まで) 図 1 惑星の内側からの番号と表面温度の関係 ① P1 の表面温度は Q1 より低く、 P2 より高い ②P2 の表面温度はQ3より低く、 Q4 より高い ③ P3 の表面温度はP2 より低く、 Q4 より高い 4, P4の表面温度は P5 より高く、 Q4 より低い ■□ 惑星系 P ▲ △ 惑星系 Q 答え(

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

○初等力学の質問です。 以下に添付している問題⑵~⑻の解答を教えて下さい🙇‍♀️。計算の過程も書いて頂ければ幸いです。 もし、可能でしたら自身の回答における間違い等を確認し、教えて頂けると非常に有難いです。

1 内径aの円筒面の一部が図1のようにA点において水平面に滑らかに接している。 水平面上にばね(ば ね係数k: 質量は無視できる)を設置し、 ばねを α/2だけ締めて静かに離すことで質量mの小球Pを円筒 面に向けて発射する。 重力加速度をg とし、また水平面、 円筒内面はともになめらかであるとする。必要 な物理量は定義した上で用いること。 なお、 各設問に対する解答は解答用紙の所定の欄に導出過程ととも に記入すること。 (1) 小球Pはばねが自然長になった時点でばねから離れた。その理由を運動方程式を用いて説明しなさい。 (2) 小球 P は円筒面内に入り、円筒内面に沿ってB点まで達した。 このときの小球P の速度を求めなさ い。 (3) 円筒面内における小球Pの運動方程式を求めなさい。 (4) 小球Pが(2)に引き続き円筒内面に沿って運動し点Cを越えるために、 ばね係数kが満たすべき条件を (不等式で)求めなさい。 (5) 小球Pは点Dにおいて円筒内面から離れた。 このときのばね定数kを求めなさい。 (6) (5)において、 小球P のその後の運動について式を用いながら説明しなさい。 (7) (6)において、 小球Pが達する最高点のy座標を求めなさい。 (8) AD 間における小球P の加速度の大きさを0の関数として示しなさい。 k P műm Mo m VA A -120° D B C x

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

6は5よりq=0になりました。 合っているか教えて欲しいです。 5.6が不安です!

原点 0 を中心とし、 厚さを無視できる、 半径 & の導体球殻 A と A より小さい半径 l2 ( l1 > l2) の導体 球殻 B のふたつの導体球殻上に分布する電荷が作る静電場について考えたい。 初めは、 導体球殻 A に電荷量 Q を与え、導体 球殻 B には 電荷を与えない状態にしておく (下図左側参照)。 その後、ふたつの導体球殻を導線Lでつなぎ、その結 果、初めに導体球殻 A にあった電荷のうち電荷量だけが導線L を通って電流として流れ、 導体球殻 B へ移動して静 止した状態になったとする。 ただし、 電荷の移動後においては、電荷は導線L上には分布せず導体球殻 A から B へ電 荷量αの電荷が移動しただけで、 いずれの導体球殻にも新たな電荷は与えないものとする(下図右側参照)。ふたつの導 体球殻上の電荷分布が作る静電場E'(r) は、 球対称性より、 l₁ B Q と書くことができ、 導線Lによる球対称性からのずれは無視できるとして以下の間に答えよ。 ただし、 r = |r | は、原点 から任意の位置までの距離であり、E'(r) はr=|r| のみに依存する求めるべき未知関数である。 また、 rを半径とし て原点を中心とする仮想的な球の領域をV、Vの境界をなす球面を Sとし、導体球殻と導線以外は真空で、真空の誘電 率を co とする。 なお、 r の値によって分類する必要がある場合には明確に場合分けして解答することとし、 問6は、 問 1から問5 までに対して正確かつ明確な導出が記述されている場合にのみ採点対象とする。 0 O l₂ 基礎物理学B 第2回レポート問題 Tº A E(r) =E(r) T T l₁ B Q-9 q O A l2 L ア 1.位置rにおける球面 S上の外向き単位法線ベクトルnを、rとr≡|r | を用いて表せ。 2. 球面 S を貫く電束を計算し(積分を実行すること)、未知関数 E(r) を含む形で表せ。 3. ふたつの導体球殻を導線Lでつなぐ前の状態における未知関数 E(r) の関数形を求めよ。 4. ふたつの導体球殻を導線Lでつないだ後の状態における未知関数 E(r) の関数形を求めよ。 5. ふたつの導体球殻を導線Lでつないだ後の状態において、 導体球殻 A と導体球殻 Bの静電ポテンシャルの差 A-B を線積分によって計算し、gを含む形で表せ。 6. 導体中での静電場の性質を考慮して、 g の値を求めよ。

回答募集中 回答数: 0
1/3