学年

教科

質問の種類

物理 大学生・専門学校生・社会人

マーカーのa(k)はa_H(k)をあらためてa(k)と置いてるということですか?

Xしていく: p) == a'(p)|0), |p,p2) = a'(pi)a'(pa)|0), このようた 態全体は,個数演算子·運動量演算子(I.8節)の固有ベクトル系と」 場の演算子の時間発展を生成消滅演算子によって表現するために,ハイゼン 完全系を構成する.より詳しく言えば,{|0), Ip.…pn) }(n=1,2,.. は,基底として一つのヒルベルト空間(Hilbert space)を張ることにから 量子力学·場の量子論で重要な役割を果たすこの空間と基底は,それぞ。 フォック空間(Fock space),フォック基底(Fock basis)と呼ばれている 必要な手続きは以上だが,上記 (3) には重要な事実が含まれている.すなに ち、{|0), Ip…p,)} が完全系ということは, 任意の物理的状態 ) が n -/IFk, |k,… k,) (ks… k,) (II.31) n=1 =1 と展開できるということである.この展開式は, 「多体系の量子力学と場の量子 論の同等性」も示している.つまり, 右辺の展開係数 (p,.…P,)は, n粒子 系の(運動量表示) 波動関数に他ならず, 従って, )による状態の「場の量子 論的な記述」は,1粒子波動関数, 2粒子波動関数, の総体による「量子力 学的な記述」と同等という訳である。 I.6 場の演算子の時間発展 る ベルク描像に移行しよう. このときゅは 中日(x, t) = e(-o) do(2)e-iH(t-to)

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

なぜ右の問題では熱量保存則が成り立つのに、 左の問題ではマーカー部の式が成り立たないのでしょうか

チェック問題 2 融解熱 標準7分 水の比熱を4.2J/(g·K), 氷の融解熱(1g融かすのに要する 熱)を336J/gとする。また容器の熱容量は無視できるものとする。 (1) 温度80℃のお湯に温度20℃の水を加えて, 30℃の水6.0Lを つくるには,それぞれの温度の水を何Lずつ混ぜればよいか。 (2)(1)でできた水に0℃の氷を入れたら,20℃になった。氷の 質量は何kgあったか。 解説 (1)(比熱の解法》(p.249)で解く。 図aのように、質量 m,[g], m,[g]を仮定し, 「温度図」 をつくる。 容器の熱容量は無視するので, 容器の熱の出入りは考えてはいけないよ。 吸収熱,放出熱は、 Qm=4.2×m,× (30-20) Qout=4.2×m,× (80-30) 「混合系」なので, Qm=Qoutより. 4.2×m,×10=4.2×m;×50 一方,m,+m,=6000gと合わせて. m,=5000g=5.0kg. m;=1000g==1.0kg よって,20℃の水は5.0L, 80℃の水は1.0L 図bのように、質量 m[g]の氷は,まずア溶ける。次に. ① 20℃まで上昇する。もちろん容器の熱の出入りは無視できる。 Step2 氷が得た熱の和は, Step1 Step2 80℃水m. [g) S Qo。 Step3 -30℃ in 20℃ 水m, [g) Qm 図a 答 (2) Step1 30℃ 水6000g Q=336×m+4.2×m×20 2out -20℃ 氷が溶けたら 水の比熱になるので 1g溶かす熱 0℃水m[g]水 水が失った熱は、 Qout=4.2×6000×(30-20) 「混合系」でQm=Qout 図b Step3 より、 336×m+4.2×m×20=4.2×6000×10 よって, m=600g=0.60kg… 252 物理基礎の熱力学

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

力学・基準振動についての問題です。 (4)以降が分かりません。 (4)のように異なる固有角振動数の問題ではどのようにして基準振動を考えればよいのでしょうか? (5)以降は同期現象だと思うのですが、どのように解けばよいのでしょうか?ちなみに(5)はΔω=2Ksin(Δφ*)と... 続きを読む

以下の問I、IIに答えよ。 また、結果だけでなく、導出過程も簡単に記すこと。 I長さの異なる紐をもつ二つの振り子の問題を考える。図1の ように』軸の正の方向を鉛直下向きとし、振り子の支点は2軸 上にあるとする。それぞれの振り子につけられている質量m のおもりは鉛直下向きに重力を受け、2軸に垂直な面内を運動 する。紐の長さはそれぞれい,であり、4>&とする。おも りの大きさや紐の質量は無視でき、運動の際に組はたるまな いとする。重力加速度をgとして、以下の問いに答えよ。 まず、支点でのまさつの効果を無視し、二つの振り子が独立に運動する場合を考える。紐の長 さがん,&の振り子の振れ角を、図1のように支点を通る鉛直下向きの軸となす角度として、そ れぞれ1,2とする。 図1 (1) 紐の長さが1の振り子のz軸まわりの角運動量 L。を求めよ。 (2) z軸まわりの角運動量 L,の時間微分の満たす方程式を示せ。 (3) が十分小さい微小振動のときの固有角振動数 w」を求めよ。 次に、二つの振り子の角度間に線形の相互作用がある系を考えよう。すなわち、Jを定数とし て、角度6,2 の運動方程式が d? =-w +J(B2 - h), d2 2= -5 + J(G,- Ba), と表せるとする。ここでwとwaは相互作用がないときの振り子の固有角振動数である。 (4) (t = 0) > 0, 0z(t = 0) = 0から静かに運動を始めるとき、その後の運動を基準振動の考 え方を用いて定性的に説明せよ。 dA dp 0, dt 振り子の角度0を振幅 Aと位相ゅを用いて0= Acos ¢ と表すと、単振動は、 と表される。ニつの振り子間に非線形相互作用があるとき、二つの振り子の位相1と2の時 間発展は上記のwiとw2を用いて次のように表せるとする: =W dt d の1=wi+ K sin(¢2- ), d 2= w2+ K sin(¢- p2). dt dt ここでKは定数とする。二つの位相の差 △¢ = 2- のが時間依存せずに一定の値をとること を「位相が同期する」という。 (5)位相が同期するときの位相差△がと固有角振動数の差 Aw = w2-wiの関係を求めよ。 (6) 位相が同期するときの振り子の角振動数”を求めよ。 (7) 位相差 AゅがAがから微小にずれても、十分時間が経った極限で位相が同期する条件を導 き、その条件をKとAwを軸とする平面上の領域として図示せよ。

解決済み 回答数: 1
1/2