学年

教科

質問の種類

物理 大学生・専門学校生・社会人

どうやるのかよく分かりません

18:39:08 * 19% ⑥ プレビュー moodle.s.kyushu-u.ac.jp/log C = 考えよう。 自動車A,Bの運動方程式をかけ。 HS ii) 今度は解いてみよう。 各々の速度を運動方程式を時間で1回 積分することで求めよう。 iii) では相対速度は? (4)テストで10点の人が2人、 15点の人が5人、 20点の人が3人のと き、平均値は、点数と人数をかけたものを総人数で割り算する(あた りまえ)。 重心は 「密度」 の平均位置と考えることができるので、 例 えば長さαで重さがMの棒状の物質を原点からx軸に沿って配置し、æ における密度をp(r) とすれば、 先述の点数に該当するのがェで人数に 該当するのがp(z)、 総人数がMとなるので、 平均位置・・・つまり重 心は11S æp(x)dx で計算することができる。このことを念頭に90度 に折れ曲がった以下のような重さMで均一な密度の棒の重心を何の公 式も用いず、 積分によって求めよ。 4/14追記 持ってきた問題がよく なかったです。これだと2重積分ではなく、x軸に沿った棒とy軸に沿 った棒の二つに分け、 各々の重心を各々平均位置で求める方法が適切 ですね。 というわけで、 二重積分ではない方法で解いてください。 y M 2 IIII 4 T 78

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

この物理の問題を教えてください

問題3 (光の干渉) T 図2のように、 絶対屈折率がn=1の2枚の平面ガラス (媒質1) の間に厚さdの薄い板を挟み、 その間にできるくさび形の層に絶対屈折率n2=1の媒質2を入れる。このとき図の点Oから距離 だけ離れた点Dの上方にある点Aから光 (単色光) を当てて上から覗き見ると、 図のOQ 間に 「光 が強め合った明線」 と 「光が弱めあった暗線」 の縞模様が現れる。 以下では簡単のために点Aから 出る光は直進するものとし、A→C→Aという経路の反射光1とA→D→Aという経路の反射光2に よる干渉だけを考える。 図のQの長さをL=100dとし、 真空中の光の波長を入 として、以下の 空欄を埋めよ。 また選択肢がある場合には選択肢の番号を書け。 (i) 媒質1における光の波長は、媒質2における光の波長の (13)倍である。 (ii) 反射光1と反射光2の光学距離の差 (14) 倍であり、 また点Aから入射した光が反射 の するときに位相がずれるのは {(15) 1.点C, 2.点D} である。 (iii) 図のOQ間に見える隣り合う明線の間隔は入。 の (16) 倍である。また=375入) の位置に できるのは {(17) 1. 明線 2. 暗線, 3. 明線でも暗線でもない線} である。 A 媒質1 X 媒質2 L Bi 光 D P 媒質 1 Figure 2: くさび形の層による光の干渉。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

熱力学の問題です! 口の空いたフラスコなのでnの物質量も変わるのでこの場合はpv/t=一定にならないのではないのですか?? nも変わっているような気がするのですが、、

3RT Nam 発展例題 14 ボイル・シャルルの法則 X 口の開いたフラスコが, 気温 〔℃〕, 圧力か [Pa] の大気中に放置されている。このフ ラスコをt〔℃〕までゆっくり温めた。 次の各問に答えよ。 〇 (1) このとき, フラスコ内の空気の圧力はいくらか。 <(2) 温度がな 〔℃〕 から 〔℃〕 になるまでに, フラスコの外へ逃げた空気の質量は, はじ めにフラスコ内にあった空気の質量の何倍か。 指針 一定質量の気体では,圧力,体積 V, 温度 T の間に, pV =一定の関係 (ボイル・ T シャルルの法則) が成り立つ。 フラスコの外へ逃 げた空気も含めて, この法則を用いて式を立てる。 解説 (1) フラスコは口が開いており, 大気に通じているので, フラスコ内の空気の圧 力は大気圧に等しい。 したがって か [Pa] (2) フラスコの容積をV[m²] とし,温める前の t〔℃〕, p 〔P〕, V[m²] のフラスコ内の空気が, 温めた後, t2 [℃] [P][P] V' [m²] になったと する。 ボイル・シャルルの法則の式を立てる と, PIV P₁V' 273+t₁ 273 + t2 = と表される。 273+t2_ これから, 273+t1 フラスコの外に逃げた空気の体積 ⊿V は , 4V=V'-V=Vx- m t₂-t₁ 273+t₁ 温める前にフラスコ内にあった空気の質量を m,外に逃げた空気の質量を⊿m とすると, Am AV V' Am V'=Vx m が成り立ち. VX. VX 発展問題 132 t₂-t₁ 273+t1 273+t2 273+t₁ = t₂-t₁ 273+t₂ 倍

解決済み 回答数: 2
1/6