学年

教科

質問の種類

物理 大学生・専門学校生・社会人

この問題の30〜36を教えてください。 2枚目はv(t)とx(t)の答えです

II page-3 以下の文章の空欄に当てはまる数値または選択肢をマークせよ。 なお、番号には 「① +, ② ③ 値が0なのでどちらでもない」 のいずれかを選択して解答すること。 単位が明記されていない物 理量はすべてSI単位の適切な基本単位もしくは基本単位の組み合わせによる組立単位を伴っている ものとする。 軸上を運動する質量3kgの物体に, 速度でに依存する抵抗力F-6(vv) が作用している。 時 刻t=0において,この物体は0の位置にいて 204m/sの速さでz軸の正方向に運動していたと する。この物体の運動方程式として適切なものを以下の選択肢からすべて選ぶと 21 となる。 (選択肢) dax dv d²v ①3- = -6(V) ②3- = dt -6(√)335 = dt dt2 =-6(VD) ④3- =vo - 6(√)³ dv dt ⑤ 3 =vo-6(vv) ⑥ z=-vot- (vo)342 ⑦ dt この運動方程式は, 変数分離を用いると, dv 03/2 = 22 23 1 I= =vot- (viit2 dt. と変形でき, 両辺の積分を実行して、 初期条件を用いることで, 24 v(t) = 26 (1+25t) と求まる。 また, 時刻における物体の位置z (t)は, 27t x(t) = う 1 + 28t となる。これらの結果から,この物体は無限に時間が経過したときに= 29 の位置で止まること が分かる。 物体がx=0からある点=Xまで動く間に抵抗力Fがする仕事Wは, 抵抗力Fを物体の動き方に あわせてで積分することによって求まるから, W = = √³ Fo X Fdx, を計算すればよいが,この計算を実際に実行するためには, 積分変数を位置から時刻tに変換して 時刻t=0から物体が=Xに到達したときの時刻t=Tまでの間にFがする仕事を求める式に変形 するのが便利である。 dr = v (t) dtに注意しつつ, 置換積分を利用してこの計算を行うことで,Wを 3132 求めることができる。 例えば, t=0からt=1/2までの間にFがする仕事は [30] - である。 33 方, 物体がt=0から29で止まるまでにFがする仕事は, T∞の場合のWを考えればよく, その結果は W=343536となる。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

この問題の(2)が分かりません。教えてください

【間 11 (第2回レポート 【問4】 の関連問題) 図のように, 一部を切り取った半径 R 円欄の断面図 の円環の左端に, 鉛直上方から質量 m のおもり落とし, 円環に沿って滑らせる。 最下 点をおもりが通過したときの時刻をt%3D0, 速さが v0であったとして, 以下の間に答え よ、ただし, 重力加速度の大きさをg, 円環とおもりの間には摩擦は無いものとする。 また,円環の中心を原点とし, 鉛直下向きを 軸, 水平右向きをy軸にとることにし. また,回転角0は, 軸から反時計回りを正の方向として測ることにする。 (1) この問題設定においては, カ学的エネルギー保存則の成立条件が満たされているこ とを示せ。 (2) おもりが円環面上にあるとき, 位置エネルギーの基準点を円環の最下点として, カ 学的エネルギー保存則の式を立てると mg mg= mu° + mgR(1 - cose) となる(v= Ró). おもりが最上点(03Dπ) にあるときは, mg= m+ 2mgR となるので、v0 の下限は vo 2 v4gR でよいことになるが, 第2回レポート 【問4】 (4) では, vo の下限はこれより大き く5gR であることが示されていたので, V4gRを下限とするのは誤りであることがわかる, そこで, この力学的エネ ルギー保存則による解法が誤りである理由 (どこに誤りがあるのか)を答えよ。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

教えて下さい。

@ *Wx で全沖 73%箇8:11 【問 1】 熱容量 Cし, C。 が一定の理想気体を, 図のような, 2 つの断熱準静的過程と, 2つ ア の等積過程によって作られるサイクルを考える. 以下の問いに答えよ. ただしッ= デー を比熱比とする. (第2 回レポート 【問1】 も参照すること) (1) 過程Aつ B.BっつっC,CっつっD.DつA, および1サイクルでの, エントロピーの変化 量を, それぞれの状態における温度 アア4.7ぉ,7C,7p を用いて求めよ. (2)て(7) は, ガソリンエンジンを想定した以下の設定で解答せよ. ガソリンの燃焼温度を 7 = 20007C, 外気温を 7 = 27?C , 空気の定積熱容量 Cr = 1.3JK 比熱比々= 1.4, 燃焼室の容積 編 = 150 cm?, 燃焼室 排気量容積 O 1 =1500 cm3 とする. また, 過程 B つ C では, 温度 77 との熱源から, 過程 D つ A では, 温度 7記 からの熱源から熱の出入りがあるものとし, それ以外の熱源は存在しないものとする. (2) 7ぉ。 7の を求めよ. (3) 過程Bつ C での放熱量 gc, D つ A における吸熱量 Qp。 を求めよ. 3 (4) 1 サイクルでの仕事を求めよ. (5) 3300 rpm での出力を求めよ. (3300 rpm=1 分間に 3300 サイクル) グ ) ) (6) 過程BつC におけるエントロピー生成1 Sco, D つ A におけるエントロピー生成 SpA を求めよ. (7) この熱機関の作業物質と, 2つの熱源を合わせた系*? について, 1 サイクルでのエントロピー変化を求めよ.

解決済み 回答数: 1
1/2