学年

教科

質問の種類

物理 大学生・専門学校生・社会人

マーカーのn²-1はどのようにわかりますか?

とと,エルミート性のかわりに, 対称性 (A, B)p = (B, A)F が成り立つことです。 実ベクトル空間の内積が複素ベクトル空間の内積と違う点は,実数値をとるこ が直接わかるわけではありません. ここでは量子トモグラフィー, つまり量子状 そのためには, いくつかの種類の測定をしなければなりません. どのような測 多数回測定によってわかるのは, あるオブザーパブルの平均値だけなので, 状態 状 態を決定することを考えます。 定を行えば量子状態を決定できるでしょうか。 ■ 4.1 密度作用素の空間 n次元複素ユークリッド·ベクトル空間H上の密度作用素全体のなす集合Dens の構造をもう少し考えてみます. 密度作用素はエルミート作用素なので, エルミー ト作用素全体のなす集合 Herm に目を向けてみましょう. Herm は実ベクトル空間です. 次元はn次のエルミート行列のパラメータの数を 数えればよくて,対角線にn個の実パラメータ,それ以外のところにn(n-1)/2個 の複素パラメータがあるので, n° 次元になります.さらに、実ベクトル空間 Herm に内積を定義しておきます。 (定義)エルミート作用素の内積 A, B をエルミート作用素とするとき, 内積( , )= : Herm × Herm → Kで (A, B)F = Tr(AB) と定義する。 また,第1スロット, 第2スロットの両方に関して実線形です。 ミ

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

力学・剛体の問題です。 (1),(2)は恐らくこれかな?という解を求めましたが、(3)以降が分かりません。

以下の問1, II に答えよ。 zA I. 質量m、半径r、厚さ、高さんの密度が一様な剛体とみなせる円 筒(図1)が、水平な床の上を初速度の大きさ 、初角速度の大きさ woで投げ出され、倒れずに滑っていく運動を考える。円筒底面の中 心を原点とし、円筒とともに移動する座標系のz, y, z 軸および偏角 9を図1のように定義する。y軸の正の向きは常に円筒の進行方向と する。偏角0の位置にある円筒底面が床から受ける単位面積あたり の垂直抗力の大きさ N(0) と動摩擦力の大きさ F(6) の間には、μを 動摩擦係数として比例関係 F(6) = μN(0) があるとする。 b 図1 重力加速度の大きさをgとし、重力はz軸の負の向きに働く。また,円筒の厚さ6は半径rよ り十分小さいとする。空気抵抗の影響は無視して、投げ出された円筒の運動に関する以下の問 いに答えよ。 まず、回転させないで円筒を投げ出す場合 (wo = 0) を考える。 (1) 投げ出した円筒の底面全体が受ける垂直抗力および動摩擦力の大きさを求めよ。 (2) 投げ出した円筒が動摩擦力を受けて静止するまでの距離を求めよ。 (3) 円筒に働く慣性力による原点まわりのトルクの大きさを求めよ。 (4) 投げ出した円筒が床の上を滑っているとき、円筒底面に働く垂直抗力は一様ではない。円 筒の前方(0 =T/2付近)と後方 (0 = ーT/2付近)のどちらの垂直抗力が大きいか、理由と ともに答えよ。 以下では、円筒底面に働く単位面積あたりの垂直抗力の大きさが N(0) = a+ Bsin0 と表せる と仮定する。ここでa,Bは定数とする。 (5) 垂直抗力による原点まわりのトルクの大きさをa, 8, r, bのうち必要なものを用いて表せ。 (6) 円筒が倒れずに滑っていくための条件をん, r, uを用いて表せ。 次に、右回り(z軸の正の向きから見て時計回り)に回転させて円筒を投げ出す場合(wo 0) を 考える。 (7) この円筒のz軸まわりの慣性モーメント「および円筒とともに移動する座標系での投げ出 した直後の運動エネルギーを求めよ。 (8) 円筒底面に働く動摩擦力の0依存性により、円筒の軌道は曲がる。その曲がる向きを理由 とともに答えよ。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

流体力学の最初の最初、ラグランジュ微分のところでつまづいて困っております。 二枚目の?をつけた計算過程はどのような微分なのでしょうか? よろしくお願いします。

の1 流れの運動学 8 1 = (u.V)u U のようにして得られた. 記号▽はナブラ (nabla) とよみ 0 鶏分(1.14) 0 マ= e』 + ey Oy 0z のように定義される演算子 (operator) であるす. ea, ey. Ez はそれぞれ』軸, 軸,2軸の正の向きに向かう単位ベクトル (unit vector) で, これらを基本ベク トル (fundamental unit vector)という。 式(1.12) の両辺を At でわって, At →0 の極限をとると,流体粒子の受け る加速度a(z,t) を求めることができ に Au a(x, t) = lim + (u-V) u(z, t) At→0 At Ot D -u(x,t) Dt となる.ただし D +u.V Ot Dt で,D/Dt をラグランジュ微分 (Lagrangian derivative),あるいは実質微 分(substantial derivative), あるいは物質微分 (material derivative) という。 Du/Dt= Ou/0t+ (u.V)uの右辺第1項は, 流体中のある点aをつぎつぎと 通過する流体粒子の速度の時間的変化の割合を表しており,局所加速度 (local acceleration) とよばれている. また第2項は,点cにある流体粒子がある瞬間 にその前後の流体粒子の速度差のために受ける速度の時間的変化割合で対流加 速度 (convective acceleration) とよばれている。 ラグランジュ微分 D/Dtは, オイラーの方法の意味で »とtの関数として表 された量,すなわち 「場の量」に対してのみ作用させることができる. なぜな ら,その定義式(1.16) の右辺は, 独立変数を αとtとするときの偏微分0/0tと ▽によって構成されているからである. aとtの任意関数 f(z,t) のラグラン ジュ微分は,式(1.15) を導いた過程から理解できるように, 流れに伴う f(x.t) の時間的変化の割合,すなわち, 流体粒子の軌跡に沿っての f(z,t) の時間的変 化の割合を表す。 十演算子▽をスカラー関数f(a)に作用させて得られるVfは, f の勾配 (gradient) とよばれ る。▽をスカラー関数に作用させたときは▽の代わりに grad という記号を使ってもよい。す なわち, ▽f=gradf. 後に述べるように, ▽をベクトルとみなしてベクトル関数に作用させ る(内積をとる)ときは, 記号 gradは使わない、ただし、式(1.13) の▽は grad を使って書 くことができる。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

3枚目の(1.2.7)や(1.2.8)はどのように出てくるのでしょうか?

ホロノーム系と非ホロノーム系 拘束条件は一般に微分形で与えられる。 力学変数をa' (i=1~N) とすると, 拘束 条件は次のように表される: W。= Qai(z, t)de'+ ba(2,t)dt =D 0, (a=1~b) ここでaは拘束条件の番号を表す添字で, kは拘束条件の数である。aai と bail と時間tの関数で, aai(z,t) は aai(2', 2?, … … aN,t) の略記である. また同一項 で上付き添字と下付添字の現れる場合はその添字について和を取るものとする (和) 号とを省略).したがって, 上式ではiについて1から Nまでの和を取る。 Weのうちで独立でないものは落とし, Waはすべて独立とする.これら w。のうち で積分可能なものがあれば, その拘束条件を積分形で表す方が便利なことが多いそ こで,積分可能なものは積分し 9u(z,t) = Cu, (μ=1~m) と表そう.Cu は積分定数であり, m は積分可能な拘束条件の数である。積分可能で ない残りの拘束条件は W。 = aoi(x,t)de" + b。(x,t)dt' = 0 (0=1~k-m) となる。この場合, 力学系の拘束条件は (1.2.2) と (1.2.3) で与えられることになり, 自由度は N-kである. 3次元空間の中の n質点系の場合は,当然 3n-kとなる。 すべての拘束条件 (1.2.1) がすべて積分可能な場合,つまりk=mのとき, この糸 をホロノーム系 (holonomic system) といい, 積分不可能な拘束条件のある場合を非 ホロノーム系という。 ホロノーム系の簡単な例は, 1質点が2次元曲面上に束縛されている場合である。 例題1.1. 曲面上の運動 曲面への法線成分を n; とすると, 質点の運動は法線に垂直であるから, 拘束条件は w= n;da° = 0

解決済み 回答数: 1
1/2