学年

教科

質問の種類

物理 大学生・専門学校生・社会人

この量子力学の一次元ポテンシャル問題が分かりません.可能であれば解説をしていただきたいです.初心者なので丁寧に教えて下さい!

3.w(x)を実関数として以下の形に書くことができるポテンシャルに対する質量mの粒子 の1次元ポテンシャル問題を考える. =2727 V(x) = 2m ·(w¹²(x) — w'(x)). (3.1) ここで,'はxによる微分を表す。例として,w(x)=(mw/2h)x2のときにV(x)はよく知られ た角振動数の調和振動子のポテンシャルから定数を引いたものになる. (a)を運動量演算子,父を位置演算子として、この系のハミルトン演算子は,一般にある 適切な実関数f(x)を用いて 1 2m =(i+if(x))(i-if(x)) (3.2) という形に書くことができる. f(x) を具体的に求めることでこのことを示せ.このこと から,この系のエネルギー固有値 En (n=0,1,...)は非負であることがわかる. 以下では, EoE1E2.・・とする. (b) エネルギー固有値E。=0の束縛状態が存在する場合を考える.この基底状態の波動関数 (x)を求めよ. ただし, 規格化定数は問わない. (c) ポテンシャルV(x)が V(x)= == 2 2 h² + = 1 ;(tanh?(x/a). ma² cosh2(x/a) 2ma² 2ma2 cosh² (x/a)) (3.3) (aは定数) のとき,対応するw(x) を求めよ. また, その結果を利用して、ポテンシャル が 2 U(x) = - ma²cosh2(x/a) (3.4) で与えられるときに基底状態のエネルギー固有値と波動関数を求めよ. ただし, 規格化 定数は問わない. (d) (3.1) 「対」になるポテンシャル V(x) = h² (w12 (x) + w" (x)) (3.5) を考える.この「対」になる系の束縛状態のエネルギースペクトルÉmはÉm=E(=0) となるものが存在しないことを除いて束縛状態のEnと一致する,すなわち,Ēo = E1 E1 = E2, ... となることを示せ. (e) ポテンシャル(3.3)と 「対」になるポテンシャルV (x) を求め, (4) の結果を利用すること で、ポテンシャルが (3.4)で与えられるときの束縛状態の個数を求めよ.

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

マーカーのa(k)はa_H(k)をあらためてa(k)と置いてるということですか?

Xしていく: p) == a'(p)|0), |p,p2) = a'(pi)a'(pa)|0), このようた 態全体は,個数演算子·運動量演算子(I.8節)の固有ベクトル系と」 場の演算子の時間発展を生成消滅演算子によって表現するために,ハイゼン 完全系を構成する.より詳しく言えば,{|0), Ip.…pn) }(n=1,2,.. は,基底として一つのヒルベルト空間(Hilbert space)を張ることにから 量子力学·場の量子論で重要な役割を果たすこの空間と基底は,それぞ。 フォック空間(Fock space),フォック基底(Fock basis)と呼ばれている 必要な手続きは以上だが,上記 (3) には重要な事実が含まれている.すなに ち、{|0), Ip…p,)} が完全系ということは, 任意の物理的状態 ) が n -/IFk, |k,… k,) (ks… k,) (II.31) n=1 =1 と展開できるということである.この展開式は, 「多体系の量子力学と場の量子 論の同等性」も示している.つまり, 右辺の展開係数 (p,.…P,)は, n粒子 系の(運動量表示) 波動関数に他ならず, 従って, )による状態の「場の量子 論的な記述」は,1粒子波動関数, 2粒子波動関数, の総体による「量子力 学的な記述」と同等という訳である。 I.6 場の演算子の時間発展 る ベルク描像に移行しよう. このときゅは 中日(x, t) = e(-o) do(2)e-iH(t-to)

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

1枚目7.2.3の2段落から式(7.2.25)までの解説がよくわかりません。どなたか教えてください

ーー ^ま ESジンジーレレYバ。 7.2.3 レイリー-ジーンズの式 は無限自由度の調和振動子の集ま りであると解釈できるから (A6節) (7.2.23) 式をそのまま用いて単純に 友, oo とすれば」 真空の比熱は発散してし まう。とすればぱば, 真空は熱浴から無限にエネルギーを得ることになり. 熱平衡状態 は突現し得ない。 もちろん, これは経験事実相容れない. それを認識した上で, あえてエネルギー等分配則が成り立つ場合に予想される幅射スペクトルを求めてみ よう. 1 辺の立方体内の電磁場を考えて周期的境界条件 (periodic boundary com- ition) を課おとにすると 電磁場の波長の整数合がと一致する必要がある こま6 7 をの各成分で成り 立つので, 波数ベクトルを7/(2)合した5 講和 ミたのを十 は無炊元の幣数ペクトル ぁみ となる. したがって, 波数の大きき上がまで の重囲に 合、 対応する整数ベクトア 開にある波数ベクトルの個数は, ヵル/(2r) の場合 ーーードー 0 ポテンシャルエネル "18 格子点上が安定な基準点だとすれば, をこからの変位を qとしたとすき 2人kea (7 20) 式のように 2 数でET のとのBB " 個の原子からなる固体を考える 上 6 としてよい で08計半しBluc 6 6であるが, もちろ

解決済み 回答数: 1
1/2