学年

教科

質問の種類

物理 大学生・専門学校生・社会人

この問題の解答を作っていただけませんか。院試の勉強に役立てるつもりです。

問題1 粒子の質量 m、ばね定数K の1次元調和振動子を考える。波動関数 y=N.exp( 26 ) yo N=exp(-1211 ) exp(61) - 2017(6) 00: = non! を考える。ここで、yは1次元調和振動子の基底状態、*およびらはフォノンの生成および消滅演 算子 z は複素定数である。 (4) (5) の解答はm、 K を用いずに、講義でも用いた実定数 1 a = V h = = ħ² (mk) = ½ 4 mo z、および、hを用いて表せ。 (1)は規格化されたエネルギー固有関数y=(6) を用いて 8 1 y = N₂Σ n=0 Vn! と表すことができることを示せ。 (2)yが演算子の固有関数であることを示せ。 さらに固有値を求めよ。 (3)が規格化されていることを示せ。 (4)yによる位置演算子の期待値x、運動量演算子のx 成分 px の期待値を求めよ。 (5)位置のゆらぎ4x=√<yl(i-xy)、および運動量のx成分のゆらぎ4p=<yl(p.-P)^v)を を求めよ。 この結果を用いて、不確定性関係が満たされていることを確認せよ。 (6) 初期条件(0)=yの場合の時間に依存したシュレディンガー方程式の時刻 t での解をy(t) と 表す。B(t)=(y(t) (1) とする。 〈4 (1) 6y(t)) をB(t) を用いて表せ。 (7) B(t)の満たす微分方程式を導出し、その一般解を求めよ。 (8)時刻tでの解y(t)による、位置、運動量のx成分の期待値を求めよ。初期状態のzは z=rexp(i0)、 ここでおよび0は実数である、で与えられるとし、期待値を、a、r、 0、 w、 t、および、hを用 いて表せ。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

大学古典力学の2質点系の問題です。 この問題の(II)で重心Gに対する相対位置ベクトルとして、解答下線部のようにおいていますが、何故こうなるのですか?分かる方がいましたら教えて下さい。

演習問題 96 2質点系の運動 (I) 右図のように xyz 座標をとる。 長さ 3r の質量の無視できる棒の両端に,それ ぞれ質量 2mmの質点を取り付けたも のが、その重心Gのまわりを一定の角 速度で回転している。 重力はy軸の負voy = の向きに働くものとし、この2質点系の y4 2m cart ro Wo m Vo. vosino- Pox VoCose ス 重心Gを, 原点から、時刻 t = 0 のときに 仰角6 (0<</2)初速度 Do = [Vox, Voy, 0]. (vo=||vo||) で投げ上げるものとする。 このとき、この回転しながら運動する 2質点系について、時刻におけ る (i) 全運動量P, (ii) 全運動エネルギーK, () 全角運動量Lを 求めよ。 また, (iv) この2質点系の位置エネルギーを求め、力学的 ネルギーが保存されることを示せ。 ただし, 2質点系の回転はxy 平面 内で起こるものとし、 空気抵抗は無視する。 ヒント! (i) 全運動量P=PG, (ii) 全運動エネルギーK=KG+K', (i) 全角運動量L=Lc+L' の公式通りに求める。 (iv) 位置エネルギーの基 準を zx平面にとる。 解答&解説 P=Pc=3mUG (ii) 2質 K = (KG ここ KG= 質量 重心 K質重Gがで対 G が, で 対 Vol (速 V01 G Toz こ Vo さ V02 -v=jo =[var-gt+v 以 G (3m) (i) 2質点系の全運動量Pは,全質量 3m が集中したと考えたときの重心Gの運動 量 Pc に等しい。 重心Gには,重力に よる加速度g = [0,-g, 0] が生じるので, その速度UGx成分は, Per PacOS (一定成分は, Voy = - gt+ vosino となる。 t = 0 のとき Poy= Posin より ∴Uc=rc=[vocose, -gt + vasin0, 0] ……① より, P=Pc=3mUc=3m [vocoso, gt + vesin 0, 0] となる。 K 162

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

シュレーディンガー方程式の範囲です。 式を求める所までは分かったのですが、エネルギーの求め方が分かりません。 n=5です。 解き方教えてください。

こで、彼にはk= (c) /hとなり、波数とエネルギーの関係が決まる。 一方、=0での波動関数に対 する境界条件から、 C1=0が決まり、 また、æ=bでの波動関数に対する境界条件から、nを正の整数 (n=1,2,3,...) としてkb (d) が与えられる。よって、エネルギーEの解は各nに対応したとびとび の値 En をとり、その値は20 = になる。 22 En = 2m62 n² (5) 今、この解を使って、 近似的に1,3,5,7,9デカペンタエンにおける電子の状態を求めてみよう。 この 近似のもとでは、エネルギーの低い準位から順に、量子数n=(e)の軌道まで電子がつまっている。 こ の分子が光を吸収して、量子数n=(e) の軌道の電子が励起し、 量子数がひとつ大きい軌道 (節は (f) 個) に遷移するときに必要となるエネルギーは、以下の式で与えられる。 5 22 = 2m62 Ent1 - En (9)+1) n = 5 2n (6) これより、吸収する光のエネルギーを計算しeVの単位で示すと、(h) eVである。ただし、んん/(2m)、 b=12.0Å、プランク定数ん=6.63 × 10-34 Js、電子の質量m=9.11 × 10-31 kg、1 eV= 1.60 × 10-19 書くこと。 Jとする。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

(6)と(8)を教えて頂きたいです。

近軸光線と ためには、鏡の高さはいくら以上なければならないか. [4] 光線が平行平板ガラスを透過するとき, (1) 入射光線と透過光線が平行であることを示せ . [3] 身長 170cm の人が垂直に置かれた鏡の前に立つとき,自分の全身の姿を見る ガラスの屈折率をn, 板の厚さをd,入射角を0とすると, 入射光線と透過 (2) 光線のずれの距離 ▲は A = d cos 0 Vn2 - sin20 光源 -a→o となることを示せ . [3] 図6.15のように,直角に置かれた2枚の鏡がある. それぞれの鏡から距離 α, もの位置に置かれた光源の像を求めよ. の全面積を求めよ.ただし, 水の屈折率を 1.33 とする. [6] 水深 2.75m のプールの底に点光源を沈めた. 光を水面から放出している水面 [7] 半径10cm の水晶の玉の表面から8.0cmの深さのところに,直径 5.0mm の 球形の不純物がある. この不純物を真上から見たとき, 不純物球は表面からどれだけ の深さに、どれくらいの大きさに見えるか.ただし, 水晶の屈折率を1.54 とする. [8] 焦点距離 12 cm の凸レンズと凹レンズの前方に,それぞれ高さ 1.0cm の物体 を置いた。レンズから物体までの距離が次の場合について, 像の① 位置, ② 高さ ③ 実像 虚像の別,および正立・倒立の別を求めよ. (1) 24cm (2) 6cm [9] 凸レンズと凹レンズの結像の公式を, a を横軸, bを縦軸にとってグラフで描け. MG 15 sin 0 眼 ただし, 光線は

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

お助けをm(_ _)m

B 【問5】 (第1回レポート 【問4】 の続き) 図のように, 温度 T の環境下で、 取手のつ いたピストンがある容器の下側に物質量 n の理想気体が封じ込められていて, 容器の 上側は真空になっている. 気体は容器を通して外界との熱のやりとりは自由にできる ものとし、ピストンの質量は無視できるほど小さく, 滑らかに動かせるものとする. ピ ストンの取手の上におもりをのせてあり, 気体の体積はV」 となっている. 以下の 問いに答えよ. (i) おもりAがのっている取手の上に, 追加でおもりBをのせるとピストンはさら に下降し、しばらくしたのちピストンは静止して気体の体積がV2 となった. こ の状態変化に伴うエントロピーの変化量 AS1 2 を求めよ. (ii) おもりBだけを取り除くと, しばらくしたのち気体の体積は V1に戻ってピストンは静止した. この状態変化に伴うエ ントロピーの変化量 AS2→1 を求めよ. (iii)(発展問題) (i) (ii) それぞれの過程でのエントロピー生成 7 Sgen1→2, Sgen2→1 を求め,これらの過程の可逆性を論 じよ. (iv) (発展問題) おもりAがのって熱平衡である状態1と, おもりBがのって熱平衡である状態2の間における, ヘルムホ ルツの自由エネルギーの差 AF1→2= F2 - F1 を求めよ. (v) (発展問題) 状態変化 1→2の間に, おもり AとBの位置エネルギーが気体に与えられる. これと (iv) で求めた AF1 2 との差は何を表しているのかを議論せよ. *4 ガソリンエンジンの熱力学的モデルとされるサイクルである. C→Dが可燃性混合気の圧縮, DAが燃焼, AB が膨張, B→Cが排気・吸気 に対応する. DAにおける吸熱は温度 TA の熱源から, BCにおける放熱は温度 T の熱源へ 瞬間的に行われるものとする, *5 仕事は、体積変化に伴って圧力がするものだけとする. *6 実際のガソリンエンジンでは,過程DAでのエネルギー流入は, 熱源 A からの熱流入ではなく、 ガソリン燃焼によるエネルギー流入である. Q *7 過程 A B において, 温度 T の熱源から熱Qを受けとるとき, Sgen = (SB-SA) - T

回答募集中 回答数: 0
1/5