学年

教科

質問の種類

物理 大学生・専門学校生・社会人

この問題がわかりません! 教えてください!

【問題1】 自動車を加速させる力は次のどれか。 ①~③の該当するものを一つ選べ。 ①エンジンの回転力 ② タイヤが路面を後ろに押す力 ③路面からの摩擦力 【問題2】 バネ定数 350N/m のバネの一端に, 質量が 10.0kgの小球を取り付けて傾斜角 30.0℃のな めらかな斜面上に置き、図のようにバネの他端を固定する。 このときの静止している小球には たらく力を考える。 重力加速度の大きさを 9.80m/s2, 有効数字 を3桁とする。 ※ 単位[N] (ニュートン): 力の単位で, [kg・m/s2] と表せる 20 (1) バネの伸びの大きさ x[cm] を求めよ。 (2) 小球にはたらく垂直抗力の大きさ N[N] を求めよ。 130.0° 【問題3】 質量m=5.00kg, 半径R=20.0cm, 長さ 180.0cmの円柱が, なめらかな2つの面 A, B に はさまれて静止している。面Aは水平面となす角度が0A = 90.0°, 面BはOp=30.0℃である。重 力加速度の大きさを g=9.80m/s2として,次の問に答えよ。 (1) 円柱が面 A から受ける垂直抗力の大きさ NA[N]を 求めよ。 面A 円柱 m 面B R (2) 円柱が面 Bから受ける垂直抗力の大きさ NB[N] を 求めよ。 OA OB 【問題4】 容器に水を入れ, その中に質量の無視できる伸び縮みのしないひもを付けて天井から吊り 下げた金属球を入れた。 水の密度をp=1.00g/cm3, 金属球の半径をr=10.0cm, 質量を m=5.00kg, 重力加速度の大きさを 99.80m/s2として,次の問に答えよ。 (円周率の値の有効数字を考えること。) (1) 金属球が押しのけた水にはたらく重力の大きさ W[N] を求めよ。 (2) 金属球が受ける浮力の大きさ F[N] を求めよ。 (3) ひもの張力の大きさ 7[N] を求めよ。 m 金属球 P 水

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

1番、3番の前半、4、5が分かりません。 自分で調べながらやっているつもりなのですが、式の関係性などが全然掴めず、解けません。過程と共に教えて欲しいです。

確認問題 #01 ドブロイ波長 1.ド・ブロイ波長は、運動量p=mv の物質が持つ波 (物質波) の波長であり、 入=h/p=h/mv と表される。ここで、 hはプランク定数、mは質量、 v は速度である。従って、運動エネル ギーEの粒子についてのド・ブロイ波長はと表される。 電子について、波長入を À 単位、 運動エネルギーをV単位で表すとき、 [Å] 150.4 == と書けることを示しなさい。 プランク [E[ev] 定数は6.626×10-34 [Js]、 電子の質量は9.109 ×10-31 [kg] 1 [eV] = 1.602 × 10-19 [J]、1[Å] = 1 × 10-10 [m] とする。 2. 運動エネルギーが50eV の電子のド・ブロイ波長を求めなさい。 3. 光の粒子性を表す光量子仮説での式により、光子エネルギーE=hv と光の波長 入の関係式 がE [eV] = 1240/2 [nm] と書けることを示しなさい。 また、波長が400nmの光について 光子エネルギーをV単位で求めなさい。 4. Ni 単結晶表面での最近接原子間距離は 0.249mm である。 電子のエネルギーが100eV の とき、n (回折の次数) がいくつまでの回折スポットが出現するか述べなさい。 また、 それ ぞれの回折角度を求めなさい。 同様に、電子のエネルギーが150eVのとき、 nがいくつま での回折スポットが出現するかと、それぞれの回折角度を求めなさい。 be 101 be 入 02 d d sine₁ =λ d sin0222 5. 運動エネルギーが100eV の電子をある金属の結晶表面に対して垂直に照射したとき、 表 面の法線方向から 25.2° と 58.3° の方向に回折スポットが観測された。 これらが、 1次お よび2次の回折スポットに対応する場合、この金属の原子間距離を A単位で求めなさい。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

どなたかわかる方おられませんかね。

2. 電子の内部状態を考察するため、 次の交換関係を満たすエルミート演算子 S1, S2 S3 を考える: [SS2]=iS3 [S2,Sa]=iS1 [S3.Si]=iS2. (1) S2 = S} + S2 + S7は任意のSi (i=1,2,3) と可換であることを示せ。 (2) St:= S1 ±iS2(複合同順) とおくとき、 次の交換関係を示せ: [S3, St] = ±S土 [S+,S_] = 2.S3. (3) |+) を Ss+) = -+), S+|+) = 0 を満たす S3 の固有状態とする。 この状態 (+) は の固有状態 となることを示しその固有値を求めよ。 (4) |-> を |-) := S_+〉 で定義する。 この状態 |-> は S3との同時固有状態となることを示しそれ らの固有値を求めよ。 またS_|-> = 0 を証明せよ。 (5)以上のような演算子と状態の組が2種類あるような合成系を考える: {${",|a}(1)}== }i=1,2,3,a=11 {S(2),\3)(2)}i=1.2.3.83=±ただし、S^^) と S(2) は全て可換であるとする。この合成系における任意 の状態は、(a) (1) (3) (2) (0, 3=±) の4種類の基底ベクトルで表され、 合成されたスピン演算子 SiS(1) + S(2) (i=1,2,3) はこの合成系の状態に Sila)(1)(3)(2) = (${1/(a)(1)(3)(2) +a)(1)(S{(2)(3) (2)) のように作用する。 この合成系における S3, 32 の同時固有状態を上記の4種類の基底ベクトルの 線型結合で表し、それぞれの固有値を求めよ。 ただし規格化は行わなくてもよい。

回答募集中 回答数: 0