学年

教科

質問の種類

物理 大学生・専門学校生・社会人

材料力学です。 わからないので教えてほしいです。

レポート課題5-1 1879年にフランスで製作され、1960年まで1 mの基準として用いられ たメートル原器は、全長に一様に作用する自重に対してその両端が水 平を保つように、スパン中央に対して対称な二点で下図のように支持 されていた。このとき突出長さaを求めよ。 W BA a 1 図中央に関して対称な二点支持はり Department of Systems Design for Ocean-Space YNU レポート課題5-2 下図のように左端で単純支持され、左端から距離の位置においてばね 定数kのばねで支持されている桁橋の支持点間に等分布荷重wが作用す る。このとき、ばね支持点から右に長さaだけ突出している部分の先端 が上下に変位しないためには、ばね定数kをいくらにすればよいか。桁 橋の曲げ剛性をEIとする。 a 図右端が不動点となるばね支持はり(分布荷重) Department of Systems Design for Ocean-Space YNU レポート課題5-3 下図に示すように、水平床の端Cより真直棒ABを突き出すとき、自重 によってBC部分は垂れ下がり、CD部分は床より浮き上がる。にのCD 、BC部分の長さをそれぞれ,,2とするとき、比4:½を求めよ。(ヒン ト:CD間を両端単純支持のはりとみなし、CD間の自重を等分布荷重 として受ける場合とCB間の自重をC点の曲げモーメントとして受ける 場合を合成し D点でたわみ角がゼロとなる条件を考えよ へ D C B b 図水平床から突き出したはり Department of Systems Design for Ocean-Space YNU

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

材料力学です。 わからないので教えて欲しいです。

レポート課題5-1 1879年にフランスで製作され、1960年まで1 mの基準として用いられ たメートル原器は、全長に一様に作用する自重に対してその両端が水 平を保つように、スパン中央に対して対称な二点で下図のように支持 されていた。このとき突出長さaを求めよ。 W BA a 1 図中央に関して対称な二点支持はり Department of Systems Design for Ocean-Space YNU レポート課題5-2 下図のように左端で単純支持され、左端から距離の位置においてばね 定数kのばねで支持されている桁橋の支持点間に等分布荷重wが作用す る。このとき、ばね支持点から右に長さaだけ突出している部分の先端 が上下に変位しないためには、ばね定数kをいくらにすればよいか。桁 橋の曲げ剛性をEIとする。 a 図右端が不動点となるばね支持はり(分布荷重) Department of Systems Design for Ocean-Space YNU レポート課題5-3 下図に示すように、水平床の端Cより真直棒ABを突き出すとき、自重 によってBC部分は垂れ下がり、CD部分は床より浮き上がる。にのCD 、BC部分の長さをそれぞれ,,2とするとき、比4:½を求めよ。(ヒン ト:CD間を両端単純支持のはりとみなし、CD間の自重を等分布荷重 として受ける場合とCB間の自重をC点の曲げモーメントとして受ける 場合を合成し D点でたわみ角がゼロとなる条件を考えよ へ D C B b 図水平床から突き出したはり Department of Systems Design for Ocean-Space YNU

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

力学・基準振動についての問題です。 (4)以降が分かりません。 (4)のように異なる固有角振動数の問題ではどのようにして基準振動を考えればよいのでしょうか? (5)以降は同期現象だと思うのですが、どのように解けばよいのでしょうか?ちなみに(5)はΔω=2Ksin(Δφ*)と... 続きを読む

以下の問I、IIに答えよ。 また、結果だけでなく、導出過程も簡単に記すこと。 I長さの異なる紐をもつ二つの振り子の問題を考える。図1の ように』軸の正の方向を鉛直下向きとし、振り子の支点は2軸 上にあるとする。それぞれの振り子につけられている質量m のおもりは鉛直下向きに重力を受け、2軸に垂直な面内を運動 する。紐の長さはそれぞれい,であり、4>&とする。おも りの大きさや紐の質量は無視でき、運動の際に組はたるまな いとする。重力加速度をgとして、以下の問いに答えよ。 まず、支点でのまさつの効果を無視し、二つの振り子が独立に運動する場合を考える。紐の長 さがん,&の振り子の振れ角を、図1のように支点を通る鉛直下向きの軸となす角度として、そ れぞれ1,2とする。 図1 (1) 紐の長さが1の振り子のz軸まわりの角運動量 L。を求めよ。 (2) z軸まわりの角運動量 L,の時間微分の満たす方程式を示せ。 (3) が十分小さい微小振動のときの固有角振動数 w」を求めよ。 次に、二つの振り子の角度間に線形の相互作用がある系を考えよう。すなわち、Jを定数とし て、角度6,2 の運動方程式が d? =-w +J(B2 - h), d2 2= -5 + J(G,- Ba), と表せるとする。ここでwとwaは相互作用がないときの振り子の固有角振動数である。 (4) (t = 0) > 0, 0z(t = 0) = 0から静かに運動を始めるとき、その後の運動を基準振動の考 え方を用いて定性的に説明せよ。 dA dp 0, dt 振り子の角度0を振幅 Aと位相ゅを用いて0= Acos ¢ と表すと、単振動は、 と表される。ニつの振り子間に非線形相互作用があるとき、二つの振り子の位相1と2の時 間発展は上記のwiとw2を用いて次のように表せるとする: =W dt d の1=wi+ K sin(¢2- ), d 2= w2+ K sin(¢- p2). dt dt ここでKは定数とする。二つの位相の差 △¢ = 2- のが時間依存せずに一定の値をとること を「位相が同期する」という。 (5)位相が同期するときの位相差△がと固有角振動数の差 Aw = w2-wiの関係を求めよ。 (6) 位相が同期するときの振り子の角振動数”を求めよ。 (7) 位相差 AゅがAがから微小にずれても、十分時間が経った極限で位相が同期する条件を導 き、その条件をKとAwを軸とする平面上の領域として図示せよ。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

量子力学、有限井戸型ポテンシャルの問題です。 (5)がわかりません。V_*=π^2hbar^2/8ma^2と求めました。

以下の問I、II に答えよ。ただし、プランク定数を 2mで割った定数をんとする。 I.1次元のポテンシャル中の質量mの粒子を量子カ学的に取り扱う。粒子の座標をとし、ポテ ンシャルをV(z)とする。aと %を正の定数として、図1のように| >«の領域でV(z)= % で|<』の領域でV(z) = 0のとき、V%の値を小さくしていったところ、V%<V,のときに東 縛状態が一つだけになった。 (1) 図2のようにV% が無限大のとき、すなわち ||>aの領域でV(z) が無限大で || Saの領 域でV(a) = 0のとき、基底状態のエネルギーおよび第1励起状態のエネルギーを求めよ。 (2) 図1のポテンシャルでV%> V,のとき、基底状態の波動関数および第1励起状態の波動関 数の概形を描け。 (3) 図1のポテンシャルでV%> V。のときを考え、基底状態のエネルギーと第1励起状態のエ ネルギーをそれぞれ Eo, E, とする。このポテンシャルを、図3のように、a<0の領域で はV(z) が無限大となるように変更する。変更後の系の基底状態のエネルギー Eを Eと EEのうちの必要なものを用いて表せ。 (4) V,を求めよ。 (5) 図4のように、|2| < 3a の領域および ||> 5a の領域でV(z) = V./2で3a< ||| < 5aの領 域でV(z) = 0のとき、束縛状態の数を答えよ。厳密に導出する必要はないが、根拠を簡 潔に記すこと。またすべての束縛状態の波動関数の概形をエネルギーが小さい順に描け。 V(2) V(2) V% * E ーa 0 a ーa 0 a 図1 図2 V(2) V(x) Vo Iv./2 0 a ー5a -3a 0 3a 5a 図3 図4

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

物理 微分方程式に関する問題です 各問について解答に間違いがないか、又、解答の一部分からないところについてお伺いしたいです (1)解答におかしなところはないか ⑵解答におかしなところはないか/下線を引いた運動方程式の解法について ⑶解答におかしなところはないか/aと中央のた... 続きを読む

【問題1】 野球ボールの運動 野球においてホームランのボールの軌跡を考える。野球ボールの質量をm, ボールをバッ トでコンタクトした瞬間の地面からの高さ, 初速度,地面に対する角度をん,, %, 6,とす る。バッターボックスからフェンスまでの距離L, フェンスの高さをHとしたときに, ホー ムランとなるために初期条件が満たすべき条件を0,-v平面上に示せ。 ヒント:ボールの軌跡を表す微分方程式を求め,6,を与えた時にホームランとな るために必要な。を求める。6,をいくつか変えて, %-G,平面上に図示する。んに よって異なる様子も検討してみるとよい。LやHは具体的な数値を入れてもよい。 【問題2】 ロケットの運動 無重力空間をまっすぐに飛ぶロケットを考える。このロケットの燃料を除く質量はM, 燃料の質量はm(t) とする。このロケットは燃料を単位時間あたり同じ質量だけ使用するも のとし,1=0での燃料の質量をm,,燃料の消費率をμ [kg/s]とする(いずれも時刻さには 無関係な正の定数)。このロケットに搭載されているエンジンは, 燃料の消費により推進力 Fを得ることができる。μが定数であるため, Fも時刻には無関係な正の定数となる。出 発点を基準にしたロケットの位置をx(t) で表す。このロケットが, 時刻t%3D0から燃料を使 用して無重力空間を飛ぶとき,x(t) の微分方程式を誘導せよ。 【問題3】 懸垂線(カテナリー) 距離aだけ離れた 2 つの支点によって支持された長さ距離Lのケーブルの懸垂線につい て考える。ケーブルの断面積をA, 密度をp, 張力をT(x), たわみをy(x) とし, たわみ角を 0(x) とする。このとき, y(x)を求めるための微分方程式を誘導せよ。 また, aと中央の最大 たわみの関係について考察せよ。

解決済み 回答数: 1