学年

教科

質問の種類

物理 大学生・専門学校生・社会人

熱力学の問題です! 口の空いたフラスコなのでnの物質量も変わるのでこの場合はpv/t=一定にならないのではないのですか?? nも変わっているような気がするのですが、、

3RT Nam 発展例題 14 ボイル・シャルルの法則 X 口の開いたフラスコが, 気温 〔℃〕, 圧力か [Pa] の大気中に放置されている。このフ ラスコをt〔℃〕までゆっくり温めた。 次の各問に答えよ。 〇 (1) このとき, フラスコ内の空気の圧力はいくらか。 <(2) 温度がな 〔℃〕 から 〔℃〕 になるまでに, フラスコの外へ逃げた空気の質量は, はじ めにフラスコ内にあった空気の質量の何倍か。 指針 一定質量の気体では,圧力,体積 V, 温度 T の間に, pV =一定の関係 (ボイル・ T シャルルの法則) が成り立つ。 フラスコの外へ逃 げた空気も含めて, この法則を用いて式を立てる。 解説 (1) フラスコは口が開いており, 大気に通じているので, フラスコ内の空気の圧 力は大気圧に等しい。 したがって か [Pa] (2) フラスコの容積をV[m²] とし,温める前の t〔℃〕, p 〔P〕, V[m²] のフラスコ内の空気が, 温めた後, t2 [℃] [P][P] V' [m²] になったと する。 ボイル・シャルルの法則の式を立てる と, PIV P₁V' 273+t₁ 273 + t2 = と表される。 273+t2_ これから, 273+t1 フラスコの外に逃げた空気の体積 ⊿V は , 4V=V'-V=Vx- m t₂-t₁ 273+t₁ 温める前にフラスコ内にあった空気の質量を m,外に逃げた空気の質量を⊿m とすると, Am AV V' Am V'=Vx m が成り立ち. VX. VX 発展問題 132 t₂-t₁ 273+t1 273+t2 273+t₁ = t₂-t₁ 273+t₂ 倍

解決済み 回答数: 2
物理 大学生・専門学校生・社会人

⑤にてエネルギー保存を示したいのですが、kl(x2-x1)とkx1x2という見慣れない項が出てきてしまいました。これらは何を表すのでしょうか。

(2) ぴっ T M 3=9/² か Imm X=0 10 22 3.1 おもりで ①おもりに対する運動方程式は m x₁ (t) = f ( x₂(+)-(α₁ (+)- l )... (i) ②おもり2に対する運動方程式は oe im m₂ (t) = = k ( X₂ (t)- X₁ (t)) -- (ii) fe X, (+) + 2₂ (²)) = ○分数の ③ cin+cil)を計算するとm(グ(ホ)+税え(たる) 両辺を積分すると m(xi(セ)+((+))=C,(c)・積分定数) 初期条件より C1=mぴなのでmxi(t)+mai(t)=mvo... (iii) よって運動量保存則が導けた。また全運動量Pの値はP=mvoと表せる。 ⑤ (1)xx1+ (ii) ×ュを計算すると m (?: (+) + Int 0₂ (C)棟分定数) ④ ciiUをtで積分するとmixi(t)+(mフェ) (+) ((m) Vott Cz (C2:積分定数) 幸せる。 PA 11 C₂ = 0 +507" m X₁ (t) + m X ₂ (t) = m Vo t すなわち x=1/2(xii(t)+22(t)) = vot と求められる。 2 12(0)²-1(ft t m x₁ x ₁ + m²₂ 21₂ = k ( x, x₂ - x₁ x₁ - x₁) - k (X₂ X₂ - 21₂ 2²₁) - x₂) 友(プ,フューズ、グレーlx)(xマューグロスコ) gift (iit) {-(メレオナズップ2)+ℓ(ゴューズ)+(x,x2+スチュ)}(乃(土) 両辺で積分すると下式のようになる。ただしC3は積分定数とする 無条件より積分定数にD 1/2/mx²+1/2/m252²={-(1/²+1/22^²)+ℓ(チュース)+x,x2}+C3 ・2 2 (TED² = mx²₁ ²2+ = mx ₂ + 1 X ² = = RX₂² - kl (X₂-X₁) - 12 X₁ X₂ = C3.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

電気双極子がつくる電場の導出過程において、 赤線部分の式変形が分かりません。 ご解説よろしくお願い致します。

9 電荷と静電場 電荷の大きさを4, 負の電荷から正の電荷にいたるベクトルをdとするとき, p=gd をその電気双極子の双極子モーメントという (図 9.26) 電気双極子がどのような電場をつ (9.43) くるかはpによっている。 一酸化炭素COや水H2Oなどの分子は電気的に中性だが,電子による負の電荷の分布の中 心と原子核による正の電荷の中心が少しずれている。このような分子は電気的には電気双 極子とみなすことができる. 電気双極子による電場を,まず電位を求め,それから式 (9.42)によって電場を計算す る,という方法で求めてみよう. 1 V(r)= 4760 (√r-d/2\_\r+d/21) 正負の電荷の中心を原点とし,正の電荷g はd/2に,負の電荷-gはd/2にあるとする. このとき, rにおける無限遠を基準点にする電位は,式 (9.37 ) により 191 図 9.26 電気双極子 1 \r-d/2 = (r²-d.r) + = 1/(1+d+r) となる。第2項はdの符号を変えればよいから, となる.ここで|d|は小さく, |d|<|r|であるとして, dについて1次までの近似でV(r) を 計算する. 式 (9.44) の( )内の第1項では, dについて2次以上の項を無視すれば, |r-d/2|=(r-d/2)・(r-d/2) r²-d.r したがって,式 (A.28) の近似を使って dr \r+d/2₁ ==—= (1-2;r) となる。これを式 (9.44) に代入し, (9.44)

解決済み 回答数: 1