学年

教科

質問の種類

物理 大学生・専門学校生・社会人

マーカーの部分はどのように出していますか?

式)Ap = 4TGP(この場合 φ<0である)を再現するように要請すれば, Kの値は が得られる。そこで, (4.31) 式がニュートン理論での重力場の方程式 (ポアソン方程 表5に開連 65 の重要な僕 Ruミ R°, uav =1" μv,a - T®, * HQ,u + T" uvT®ay -T' uaT® vm (4.25) となる。特にその 00 成分は Roo = T°00,a -T°oa,0 + T"ooTe ay - T"oaT®og. (4.26) ここで,3.2 節と同じく弱い重力場の場合: (4.2 9uv = 7uv + huv, hul <1 (4.27) なくとも e) から自 を考えると,T~O(h) なので, 最低次では Roo ~T"00,a-1"0a,0 r'o0, Ap. (4.28) (3.25) 式 っきり、Roo は,ニュートン理論における重力ポテンシャルのラプラシアンを与える項 (4.23) になっている。 これに対応する物質場を考えるために, まず (4.21) 式の両辺のトレースをとると (4.24) (左辺) = R-; 1 × 4R = -R= (右辺) =D «T. (4.29) 2 したがって, 一場合に 1 Rw =KTuw + 59uu R =x(Tuw - 59muT) て, そ ではな 3 (。+で) ) 0 (oo + E Ti) (4.30) Roo =K(Too go0 力場を のなか 事に満 よう。 2 i=1 ~-1 2-Too (4.6) 式を用いて,非相対論的完全流体 (lo<1かつp<pが成り立つ)に対して (4.30) 式の右辺を具体的に計算すると (4.31) K K K Roo ~ (+ po° + 3p) ~(o+3p) ~50 ーンソ (4.32) K= 8TG っし実 マ一蔵 (4.33) 1 G = Rw 29uu R= 8mGTu 12 った ためcを入れた場合の次元を考えておくと

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

1枚目7.2.3の2段落から式(7.2.25)までの解説がよくわかりません。どなたか教えてください

ーー ^ま ESジンジーレレYバ。 7.2.3 レイリー-ジーンズの式 は無限自由度の調和振動子の集ま りであると解釈できるから (A6節) (7.2.23) 式をそのまま用いて単純に 友, oo とすれば」 真空の比熱は発散してし まう。とすればぱば, 真空は熱浴から無限にエネルギーを得ることになり. 熱平衡状態 は突現し得ない。 もちろん, これは経験事実相容れない. それを認識した上で, あえてエネルギー等分配則が成り立つ場合に予想される幅射スペクトルを求めてみ よう. 1 辺の立方体内の電磁場を考えて周期的境界条件 (periodic boundary com- ition) を課おとにすると 電磁場の波長の整数合がと一致する必要がある こま6 7 をの各成分で成り 立つので, 波数ベクトルを7/(2)合した5 講和 ミたのを十 は無炊元の幣数ペクトル ぁみ となる. したがって, 波数の大きき上がまで の重囲に 合、 対応する整数ベクトア 開にある波数ベクトルの個数は, ヵル/(2r) の場合 ーーードー 0 ポテンシャルエネル "18 格子点上が安定な基準点だとすれば, をこからの変位を qとしたとすき 2人kea (7 20) 式のように 2 数でET のとのBB " 個の原子からなる固体を考える 上 6 としてよい で08計半しBluc 6 6であるが, もちろ

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

考える力学という本の163ページ(9.27)の式変形がわかりません! この2ページにヒントがあると思うのですが... どなたかお願いします🤲

$9.2 ベクトルの回転 XXK。 ある軸のまわりに角速度 で回転している任意 の トル 4 の単位時間あた りの回転 4/d7 を の を用 いて表す式を求めよう. ペク トルは向きと大きさを与えれ ば決まるから, 回転の様子は。 4 の始点を電上にもって きて, 図9.4のように描くことができる. 時間A7 の間の 4の変化A4 は 図9.4から明らかなようだだ。のと4の 両方に垂直である. 0.3 條性系に対して回転している座標 以上で準備ができたので, 慣性系S に対し 回転しでいる座標系 S'(図9.5) から見た質 点の運動を考えよ う. ざ 系の原点 0' を回転較 上にとり, S系の原点O はどこにとってもょ いから, 0と一致するように選ぶ. 純粋に回 暫のみの場合を考え, S/系はS 系に対して角 速度@ で回転しでいるが, 並進運動はしてぃ 4A41」ゅ。 A414 (9.9) 8 JeO9時4のの > ないも5のとする. の の向きとS系やS*系の座 計 8 に (0 2 林間の向きは必ずしゃ一致している必要はない 9 ER 2 肉原還はとでに理由がない限り自由に選べるから, 図9.5ではぁと。坦 =4sim |6|Az ⑲) である. 4 は4のゅに垂直な成分を表す. したがって。ペベク トル積を用 れば, 向きも含めて 2軸を一致させて描いてある. ただし, 以下では, 座標軸の選び方によらず に成り立つ三股的な議論を行う座標系の相対的な並進運動はなく, かっ (8.4) において ro = 0 だから と表すことcs. 44々ox4A/ @ 2 9.13) ・ を 47 て除して4/ 0 の極限をとる と ある。 この場合には。 $ 8.3 で行ったようなベクトル記号のみによる議論は (OK 押力であるそこで, あらためて,「座標示による質点の運動の記述」 とは何 7 本 上2 @め であるかを考え もae 2 てみると, 系での運動の記六 0 @, 6 @ の運動は見えず(なぜならそれが座標の基準だから) 2 ゆりが<般のまわりに崩導訟ので回転している. < 半 "05 とその大き = 6c 6寺26 ⑲1め っー00のまめょ。 間 に 了9 も @.5) 尺の 員 ・g三ex 、 そ UE 了 の “バム=⑩0.のx,2.0) coo 語I20) K の記述 5 1 0, の運動は見えず (周) 8 DX 衣/二eeキリのる R as/5。 ORG3の(azの Ne 人 oe @.⑰ 質点の加速度・g ニ@y の とする記述 SS 誠林成分 の。 Gi Yoのがあらわに含まれる関係式 遇 人 r6x $9.3 條性系に対して回転している座標

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

電磁気学における時間反転についての説明なんですが、1枚目下の「これからわかるように〜」のところからE(x,t)→E'(x,t)になることと、磁場に対してはH(x,t)→H'(x,t)となる理由がよくわかりません どなたか説明お願いします🙇‍♂️🙇‍♂️🙇‍♂️

82 典禁変換と時間反転 4 @?7((の) 22(/9)) ②.23) がえられる. ただし, この場合力 が は時間にはなまによらないものとする。 (2.23) でパラメーター が を ! におきかえると g2ヶ/(/ 2 9 = 如⑦). ②.2?⑰ (2.22) と (2.24) とを比較すると, 粒子の軌道 の が Newton の運動方程式の 解であるならば, その運動の逆転 7⑰ もまた同じ運動方程式の解とたることが わかった. いいかえると, 力がなまに時間によらないときにたは, 粒子の運動は可 逆的である. この性質 は 電磁気学 においても 保証さんているであろうか. それを調べるた め, まず点電荷の速度を考えよう. LuO 9一の) の7(の の 一が) の/ であるから, 映画を逆転させると速度は みの6 、 gみの み 3が @.25) (2.26) と変化し。その符号が変わる. ゆえに, 電流密度は りーンーが(eー7の) ーー バー 7(一の)) ーーなーの) ニーが(%, の) 2 と交換するから。 (2.28) (のーーるの・ SIN Ampere-Maxwell の法則 9の rot 万ニーター DS 等目しょ うら. これからわかるように, 電場は

解決済み 回答数: 1