学年

教科

質問の種類

物理 大学生・専門学校生・社会人

新高2です。図aから図bへの書き換え方がわかりません。どなたか教えていただきたいです!

必闘79.〈音波の性質) 図1上図のように原点Oにスピーカーを置き, 一定の振幅で、 一定の振動数fの音波をx軸の正の向きに連続的に発生させる。 空気の圧力変化に反応する小さなマイクロホンを複数用いて, x 軸上(x>0) の各点で圧力pの時間変化を測定する。 ある時刻において, x軸上(x>0) の点P付近の空気の圧力か をxの関数として調べたところ, 図1下図のグラフのようになっ た。ここで距離 OP は音波の波長よりも十分長く,また音波が存 在しないときの大気の圧力を poとする。 圧力かが最大値をとる x=Xo から,次に最大値をとる x=xs までのxの区間を8等分 し、, 2,…, Xxと順にx座標を定める。 (1) x」からx。 までの各位置の中で, x軸の正の向きに空気が最も大きく変位している位置, およびx軸の正の向きに空気が最も速く動いている位置はそれぞれどれか。 次に点Pで空気の圧力pの時間変化を調べたところ, 図2のグ ラフのようになった。圧力かが最大値をとる時刻 t=Do から, 次に最大値をとる時刻 t3Dts までの1周期を8等分し,丸, ね, ……, pols ちと順に時刻を定める。 (2) ちからなまでの各時刻の中で, x軸の正の向きに空気が最も 大きく変位しているのはどの時刻か。 図3のように、原点0から見て点Pより遠い側の位置に, x軸 に対して垂直に反射板を置くと, 圧力が時間とともに変わらず常 年 に加となる点がx軸上に等間隔に並んだ。 (3) これらの隣接する点の間隔 dはいくらか。 なお, 音波の速さ スピーカー p pos X34 X5 X7 X8 %6 点P付近の拡大図 図1 ts t ts toち Ttsty ts t 図2 反射板 図3 をcとする。 (4)(3)の状態から気温が上昇したところ, (3)で求めたdは増加した。その理由を説明せよ。 [12 東京工大)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

新高2です。⑸から⑺の問題がわかりません。教えていただきたいです!

o77. (平面波の反射·屈折 干渉) 段差と壁面をもつ大きな水槽に水が入っている。この水 捕では、図上部の断面図で示したように, 壁面からの距離 水面 がL以上である領域Aでは水深が2んであり, 距離がLよ り小さい領域Bでは水深がんである。 図下部は, この水槽 を真上から見た図であるが,図の破線で示したように, こ の水深が変わる境界面は, 壁面と平行である。領域Aから, 境界面に向かって速さ り, 波長入の平面彼が入射し, 境界 面で屈折され,さらにこの屈折波が壁面に向かう。 ただし, 波の振幅はんに比べて十分に小さいとする。 図下部の斜め の実線は,入射波における波の山の波面を表しているが, この波面と境界面のなす角は45° であった。なお, 領域Bでの屈折波の波面や壁面で反射さ れた反射波の波面は問題の都合上かいていない。境界面での反射は無視でき, 波の速さは, 水深の平方根に比例するとして, 次の問いに答えよ。 (1) 領域Aでの波の周期Tを求めよ。 (2) 領域Bでの波の速さ が'をひを用いて表せ。 (3) 領域Aに対する領域Bの屈折率nを求め,領域Bでの波面と境界面のなす角度『を求め 境界面 壁面 2h hl 断面図 入射波の波面 真上から 見た図 L- 領域A 領域B よ。 (4) 領域Bでの波の周期 T' と波長/を求めよ。 境界面で屈折された波は, さらに進行し壁面で反射された。ただし, 壁面での反射は自由 端反射であるものとする。 屈折波とこの反射された波が干渉し, 定在波(定常波)が観測さ れた。定在波を観測したところ, 境界面と平行に線状に節が観測されたが, ちょうど境界面 上にも節が観測された。 また, 領域Bには, 境界面での節以外に6本の節の線が現れた。 (5) 壁面において, 壁面と平行に進む波が観測された。この波の波長入。と速さ。を求めよ。 (6)境界面での節が, 壁面から数えて7番目の節であるという事実を使って, Lを入で表せ。 (7) 反射波が境界面を通過して, 領域Aにも定在波ができた。 領域Bの場合と同様に, 定在波 の節が境界面と平行な複数の線を形成する。 この場合の隣りあう線の間の距離dを入で表 せ。 (19 埼玉大)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

流体力学の最初の最初、ラグランジュ微分のところでつまづいて困っております。 二枚目の?をつけた計算過程はどのような微分なのでしょうか? よろしくお願いします。

の1 流れの運動学 8 1 = (u.V)u U のようにして得られた. 記号▽はナブラ (nabla) とよみ 0 鶏分(1.14) 0 マ= e』 + ey Oy 0z のように定義される演算子 (operator) であるす. ea, ey. Ez はそれぞれ』軸, 軸,2軸の正の向きに向かう単位ベクトル (unit vector) で, これらを基本ベク トル (fundamental unit vector)という。 式(1.12) の両辺を At でわって, At →0 の極限をとると,流体粒子の受け る加速度a(z,t) を求めることができ に Au a(x, t) = lim + (u-V) u(z, t) At→0 At Ot D -u(x,t) Dt となる.ただし D +u.V Ot Dt で,D/Dt をラグランジュ微分 (Lagrangian derivative),あるいは実質微 分(substantial derivative), あるいは物質微分 (material derivative) という。 Du/Dt= Ou/0t+ (u.V)uの右辺第1項は, 流体中のある点aをつぎつぎと 通過する流体粒子の速度の時間的変化の割合を表しており,局所加速度 (local acceleration) とよばれている. また第2項は,点cにある流体粒子がある瞬間 にその前後の流体粒子の速度差のために受ける速度の時間的変化割合で対流加 速度 (convective acceleration) とよばれている。 ラグランジュ微分 D/Dtは, オイラーの方法の意味で »とtの関数として表 された量,すなわち 「場の量」に対してのみ作用させることができる. なぜな ら,その定義式(1.16) の右辺は, 独立変数を αとtとするときの偏微分0/0tと ▽によって構成されているからである. aとtの任意関数 f(z,t) のラグラン ジュ微分は,式(1.15) を導いた過程から理解できるように, 流れに伴う f(x.t) の時間的変化の割合,すなわち, 流体粒子の軌跡に沿っての f(z,t) の時間的変 化の割合を表す。 十演算子▽をスカラー関数f(a)に作用させて得られるVfは, f の勾配 (gradient) とよばれ る。▽をスカラー関数に作用させたときは▽の代わりに grad という記号を使ってもよい。す なわち, ▽f=gradf. 後に述べるように, ▽をベクトルとみなしてベクトル関数に作用させ る(内積をとる)ときは, 記号 gradは使わない、ただし、式(1.13) の▽は grad を使って書 くことができる。

解決済み 回答数: 1