学年

教科

質問の種類

物理 大学生・専門学校生・社会人

zに対する変分δI₁の出し方がわかりません、教えてください

2 一般相対性理論 i番目(i=1, 2, ……, N) の質点の座標を z"(ri) あるいは略して z(i), 固有時を T () は dz"(ri)ldriを表わす。 また g() とは gpola(i)) のことである。このI さて(2.43) の 2(i) に対する変分を計算してみよう.ここでながi番目の粒 となる。したがって Isは, 任意の座標変換に対してその値が不変, つまりス またその質量をmi とすると, この物理系の全作用積分Iはつぎのようになる: 27 ここでムは Iム=-2mcv-gm()P()E(Hdru (2.43) は次のようにかくこともできる: I、= -2mc||v-g()を()ぜ(みのー2(i)dzid"a. (2.43)) 1 Iはつぎの量である: =1 Jadu 1 1 I,= - 2cK. -g·Rd*a. (2.44) ミ 2cK, 一般にテンソルにV-gのかかった量をテンソル密度とよび, それをもとの テンソルと区別するために花文字で表わすことにする。特に上にでてきたRの ように,スカラーRにV-gのかかった量をスカラー密度とよぶ。 座標変換 →'に対してスカラーは R(x) = R'(x') であるが,スカラー密度は, V-gという量がついているために R(r) = R(®,.) (2.45) あるいは簡単に al2) という関係をみたす。 (2.45) から (e co)5 (2.45) R(x^)d*a' = R(2)d*x = スカラー カラーである。 子の固有時であることに留意すると

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

力学・基準振動についての問題です。 (4)以降が分かりません。 (4)のように異なる固有角振動数の問題ではどのようにして基準振動を考えればよいのでしょうか? (5)以降は同期現象だと思うのですが、どのように解けばよいのでしょうか?ちなみに(5)はΔω=2Ksin(Δφ*)と... 続きを読む

以下の問I、IIに答えよ。 また、結果だけでなく、導出過程も簡単に記すこと。 I長さの異なる紐をもつ二つの振り子の問題を考える。図1の ように』軸の正の方向を鉛直下向きとし、振り子の支点は2軸 上にあるとする。それぞれの振り子につけられている質量m のおもりは鉛直下向きに重力を受け、2軸に垂直な面内を運動 する。紐の長さはそれぞれい,であり、4>&とする。おも りの大きさや紐の質量は無視でき、運動の際に組はたるまな いとする。重力加速度をgとして、以下の問いに答えよ。 まず、支点でのまさつの効果を無視し、二つの振り子が独立に運動する場合を考える。紐の長 さがん,&の振り子の振れ角を、図1のように支点を通る鉛直下向きの軸となす角度として、そ れぞれ1,2とする。 図1 (1) 紐の長さが1の振り子のz軸まわりの角運動量 L。を求めよ。 (2) z軸まわりの角運動量 L,の時間微分の満たす方程式を示せ。 (3) が十分小さい微小振動のときの固有角振動数 w」を求めよ。 次に、二つの振り子の角度間に線形の相互作用がある系を考えよう。すなわち、Jを定数とし て、角度6,2 の運動方程式が d? =-w +J(B2 - h), d2 2= -5 + J(G,- Ba), と表せるとする。ここでwとwaは相互作用がないときの振り子の固有角振動数である。 (4) (t = 0) > 0, 0z(t = 0) = 0から静かに運動を始めるとき、その後の運動を基準振動の考 え方を用いて定性的に説明せよ。 dA dp 0, dt 振り子の角度0を振幅 Aと位相ゅを用いて0= Acos ¢ と表すと、単振動は、 と表される。ニつの振り子間に非線形相互作用があるとき、二つの振り子の位相1と2の時 間発展は上記のwiとw2を用いて次のように表せるとする: =W dt d の1=wi+ K sin(¢2- ), d 2= w2+ K sin(¢- p2). dt dt ここでKは定数とする。二つの位相の差 △¢ = 2- のが時間依存せずに一定の値をとること を「位相が同期する」という。 (5)位相が同期するときの位相差△がと固有角振動数の差 Aw = w2-wiの関係を求めよ。 (6) 位相が同期するときの振り子の角振動数”を求めよ。 (7) 位相差 AゅがAがから微小にずれても、十分時間が経った極限で位相が同期する条件を導 き、その条件をKとAwを軸とする平面上の領域として図示せよ。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

マーカーの部分はどのように出していますか?

式)Ap = 4TGP(この場合 φ<0である)を再現するように要請すれば, Kの値は が得られる。そこで, (4.31) 式がニュートン理論での重力場の方程式 (ポアソン方程 表5に開連 65 の重要な僕 Ruミ R°, uav =1" μv,a - T®, * HQ,u + T" uvT®ay -T' uaT® vm (4.25) となる。特にその 00 成分は Roo = T°00,a -T°oa,0 + T"ooTe ay - T"oaT®og. (4.26) ここで,3.2 節と同じく弱い重力場の場合: (4.2 9uv = 7uv + huv, hul <1 (4.27) なくとも e) から自 を考えると,T~O(h) なので, 最低次では Roo ~T"00,a-1"0a,0 r'o0, Ap. (4.28) (3.25) 式 っきり、Roo は,ニュートン理論における重力ポテンシャルのラプラシアンを与える項 (4.23) になっている。 これに対応する物質場を考えるために, まず (4.21) 式の両辺のトレースをとると (4.24) (左辺) = R-; 1 × 4R = -R= (右辺) =D «T. (4.29) 2 したがって, 一場合に 1 Rw =KTuw + 59uu R =x(Tuw - 59muT) て, そ ではな 3 (。+で) ) 0 (oo + E Ti) (4.30) Roo =K(Too go0 力場を のなか 事に満 よう。 2 i=1 ~-1 2-Too (4.6) 式を用いて,非相対論的完全流体 (lo<1かつp<pが成り立つ)に対して (4.30) 式の右辺を具体的に計算すると (4.31) K K K Roo ~ (+ po° + 3p) ~(o+3p) ~50 ーンソ (4.32) K= 8TG っし実 マ一蔵 (4.33) 1 G = Rw 29uu R= 8mGTu 12 った ためcを入れた場合の次元を考えておくと

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

力学・剛体の問題です。 (1),(2)は恐らくこれかな?という解を求めましたが、(3)以降が分かりません。

以下の問1, II に答えよ。 zA I. 質量m、半径r、厚さ、高さんの密度が一様な剛体とみなせる円 筒(図1)が、水平な床の上を初速度の大きさ 、初角速度の大きさ woで投げ出され、倒れずに滑っていく運動を考える。円筒底面の中 心を原点とし、円筒とともに移動する座標系のz, y, z 軸および偏角 9を図1のように定義する。y軸の正の向きは常に円筒の進行方向と する。偏角0の位置にある円筒底面が床から受ける単位面積あたり の垂直抗力の大きさ N(0) と動摩擦力の大きさ F(6) の間には、μを 動摩擦係数として比例関係 F(6) = μN(0) があるとする。 b 図1 重力加速度の大きさをgとし、重力はz軸の負の向きに働く。また,円筒の厚さ6は半径rよ り十分小さいとする。空気抵抗の影響は無視して、投げ出された円筒の運動に関する以下の問 いに答えよ。 まず、回転させないで円筒を投げ出す場合 (wo = 0) を考える。 (1) 投げ出した円筒の底面全体が受ける垂直抗力および動摩擦力の大きさを求めよ。 (2) 投げ出した円筒が動摩擦力を受けて静止するまでの距離を求めよ。 (3) 円筒に働く慣性力による原点まわりのトルクの大きさを求めよ。 (4) 投げ出した円筒が床の上を滑っているとき、円筒底面に働く垂直抗力は一様ではない。円 筒の前方(0 =T/2付近)と後方 (0 = ーT/2付近)のどちらの垂直抗力が大きいか、理由と ともに答えよ。 以下では、円筒底面に働く単位面積あたりの垂直抗力の大きさが N(0) = a+ Bsin0 と表せる と仮定する。ここでa,Bは定数とする。 (5) 垂直抗力による原点まわりのトルクの大きさをa, 8, r, bのうち必要なものを用いて表せ。 (6) 円筒が倒れずに滑っていくための条件をん, r, uを用いて表せ。 次に、右回り(z軸の正の向きから見て時計回り)に回転させて円筒を投げ出す場合(wo 0) を 考える。 (7) この円筒のz軸まわりの慣性モーメント「および円筒とともに移動する座標系での投げ出 した直後の運動エネルギーを求めよ。 (8) 円筒底面に働く動摩擦力の0依存性により、円筒の軌道は曲がる。その曲がる向きを理由 とともに答えよ。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

(2)のグラフをかく問題で、tの範囲が与えられていないのになぜ2Tで終わってしまうのでしょうか。よろしくお願い致します。

電池(起電力 E (V]), コンデ ンサー(電気容量C [F]), コ イル(自己インダクタンスL (H))を右図にようにつなぐ。 まずスイッチS, を入れ充電す ると,コンデンサーには 0 が蓄えられる。 次にS, を開き S。を閉じると が生じる。角周波数 ω3D ] [rad/s] で あるから,周期 T=[0] f=[6] [Hz] である。 点Qを基準とする点Pの電位V[V] は,時間 t [s] (スイッチ S, を入れた時刻をt=0とする) の関数 としてTを用いて表すと、 (V) (1) 電気振動が生じてるとき,コンデンサーに 蓄えられるエネルギー U。 [J] を, E, C, T, t を用いて表す。 282 S。 1 0 CE 2 E- Cキ の電気振動 1 3 LC Q (J]のエネルギー ④ 2元、LC 4編 1 6 2元、LC (s), 固有周波数 2元 6Ecos t T の 1 -CE tos 2 2元 T 4元 81+cos T CE U、= -CE = Uo 9 -CV°= 2 ~ 三 4 oe(-) 1+cos20 (cos'0= を用いて変形せよ) 右図に(1)のグラフ をかけ。ただし、 イ 2 -CE sin 2 -CE'sin' 2 Uc[J). MAAL Co0 1 だけ し,=- CE"とする。 2 Cos8: (tam20 0.5)T Y.50 2T) H{s) 2 ーUト (3) 電気振動が生じて いるときコイルに蓄えられているエネルギーた= U, (J]を6, C, T, tを用いて表すと 24。 f T -U J そ切 Ves U,=0 o) なせててま? tの駅回特にないけ。 Gmad Jo 158

解決済み 回答数: 1