学年

教科

質問の種類

物理 大学生・専門学校生・社会人

物体の落下と粘性抵抗力に関する問題です。最初の図を書く問題からわかりません。わかる方いらっしゃいますか?よろしくお願いします。

問題2 質量の質点の空気中における落下を考える. 質点には重力, および空気による粘性抵抗力 がはたらいている. 粘性抵抗力の大きさは質点の速度に比例し、その比例係数をん > 0 とする. 重力加速度をg とする. 鉛直下向きをy軸とする. 以下の問いに答えよ. 1. 質点とy軸を描き, 質点にはたらく重力と粘性抵抗力を矢印として図に描き入れよ. ま た、それぞれの大きさを図に書き入れよ(「大きさ」 が負の値にならないように注意!). 2. 質点の運動を記述する運動方程式を書け. 3. 時間の経過とともに質点は重力の影響で加速し, それに伴い粘性抵抗力が増大する. 十分 に時間が経つと質点にはたらく重力と粘性抵抗力がつり合い, 質点の速度は一定値に 達する (終速度という). 質点が終速度に達したとき加速度が0であることを踏まえて 運動方程式を解くことなくf を求めよ. 4. 運動方程式を解け. また, 運動方程式の解y(t) を時間微分し, t→∞の極限をとること で終速度 limt→ ý (t) を求め, 前問で導いた答えと一致することを確認せよ.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

5-c, 6-bを教えていただきたいです

5) 図 4.2 に示すように抵抗値 R の抵抗と容量Cのコンデンサが接続された回路がある. 入力を電圧e(t), 出力をコンデンサ両端の電圧vc (t) とする. 問5)においては, t=0 で 回路は静止状態にあるものとする. 静止状態とは,すべての素子に流れる電流,及び 素子両端間の電位差が0である状態をいう. a)この回路の入出力間の伝達関数H(s) = Vc(s)/E (s)を求めよ. ここで, Vc(s), E(s)は, それぞれ, vc(t) とe(t) のラプラス変換である. b)この回路に入力として, 高さ のステップ電圧e (t) = vou(t) を与えた時の出力vc(t) を求め,さらに図示せよ。 ただし, v > 0 とする. c) この回路に入力として, パルス幅Tで高さv のパルス電圧を与えた時の出力v(t)を 求め,さらに図示せよ。このとき, 入力e(t) は,式 (4.2) で定義したパルス波p (t) を 用いて, e(t) = vop (t) と表すことができる. し 単位ステップ関数をuct)として Pit) = u(t) - ult-Ti) e(t) R C vc(t) 図 4.2 RC 回路 6) 図 4.2の回路の入力として, パルス幅T」で高さ v のパルス電圧を周期Tで繰り返し与 える.ただし,T> T1 とする. 十分に遠い過去から入力が与えられ, t≧0では回路が 定常状態に達しているとする.定常状態では, vc(t) = vc(t + T)となっている.この とき,0≤t<Tの1周期の出力を求めたい. a) 図 4.2の回路で, vc (0) 0の場合の, E(s)とVc(s) の間に成り立つ関係式を求めよ.こ こで, Vc(s), E(s) は, それぞれ, vc (t) とe(t) のラプラス変換である. b)上記 a)で求めた関係式を用いて,入力e(t)としてvop(t)を与えた時の出力v(t)を求 めよ.ただし, vc (0) は未知数として残したままで解くこと. e) 上記 b)で求めた式で, vc(0) = vc(T)の関係を用いてvc(0)を求めよ.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

物性物理学の本を読んでいて、質問があります。 本では, 量子力学による1電子原子の電子状態の記述について 添付のように述べていて, (1.12)式までは良いのですが, 赤枠で囲ったところの式(1.13)の導出過程が知りたいです。 よろしくお願いいたします。

$1.2 1電子原子の電子状態 1 p° = 2me 2 a 1 V= 2m。 2m。(r+ r dr 原子においては,原子核を中心としてそのまわりの半径10-10m程度の領 の形となる。ここでAは次のような角度に関する微分演算子である。* 域を電子が運動している。原子の構造を理解するためには,この電子の振舞 1 sin 0 d0 1 を調べなくてはならない。まず最も単純な場合として,Ze の正電荷をもった A= - (sin 0 sin' 0 核のまわりを,1個の電子が運動している場合を考える。Z=1であればこ 1電子原子のハミルトニアンがこのように具体的に与えられた.このハミル れは水素原子そのものであり,Z =2であれば He* イオンということにな トニアンに対するシュレーディンガー方程式(1.9) は2階の微分方程式の形 る。 をしている。これを満たす解として波動関数T(r, 0, φ) が求まれば,1電 原子の質量のほとんどは核に集中しているので、そこを重心として座標の 子原子における電子の分布の様子がわかる。ところで,原子に属する電子の 原点にとってさしつかえなかろう。電子は -e の電荷をもち,核の正電荷 波動関数は,核から十分遠方(r→0)ではゼロに収束するはずである。こ Ze とクーロン相互作用をもつ。そのポテンシャルエネルギーは電子と核の のような境界条件の下で(1.9)式を考えると,電子のエネルギー固有値 E が 間の距離rに反比例し, 離散的な特定の値をとるときのみ解が存在する。これは量子力学系の顕著な Ze? V(r) = - 特徴である。 4TE0ア 最も低いエネルギー固有値を与える解は球対称で、次の形をしている。 である。* これは万有引力と同じ形をもつので,古典的に考えれば,地球が 17Z/2 ( exp(-) 太陽のまわりを回るように電子は核のまわりを楕円軌道を描いて回ると考え 『(r) = たくなる。しかしながら,このような極微の世界まで古典ニュートン力学が ただし,ここで そのまま成立するわけではない,電子の振舞を正しく理解することは,今世 4TEh An = mee? =0.529 A 紀初頭登場した量子力学をもってはじめて可能となった。量子力学によると, 電子の存在確率は波動関数 『(r)の絶対値の2乗に比例する。定常状態では 『(r)は次のシュレーディンガー方程式を満たすというのが量子力学の骨子 はボーア半径とよばれる。 である。 H V (r) = ET (r) ここで はハミルトニアンで,電子の運動エネルギーとポテンシャルエネ ルギーの和であり, 1 p°+ V(r) 2m。 H = の形をもつ。** 第2項のポテンシャル項は方向によらず,核からの距離のみ に依存するので,全体を極座標を用いて表した方が都合がよい。このとき, 第1項の運動エネルギーの部分は Eo = 8.8542 × 10-12 F/m は真空の誘電率。 m。は電子の質量,p= - iAVは運動量オペレータである。ただし,▽はナプラと読 み,直交座標系では 定,立,えを直交する単位ペクトルとして、V= -+ の形をもつ微分演算子である。カ = h= 6.626× 10-4JSはプランク定数。

解決済み 回答数: 1
1/4