学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(2)で、なぜ9+3になるのかが分かりません。教えてくださいよろしくお願いします

●7 重複組合せ A,B,C,D の4種類の缶詰を合わせて9個買うとき, (1) それぞれの缶詰を少なくとも1個は買う場合,買い方は何通りあるか. (2) 買わない缶詰の種類があってもよい場合, 買い方は何通りあるか. 種類ごとにまとめて並べる ← (産業能率大) 理するとしたら、多くの人が「左から A,B,C,D の順に、同じ種類の缶詰をまとめて並べる」とする 同じ買い方か違う買い方かが一目でわかるように(買った缶詰を)整 のではないか.例えば,Aを3個, Bを4個 Cを1個,Dを1個ならAAABBBBCDとなる.そして, この文字列は, AとBの境,BとCの境, C とDの境が決まれば決まる (復元できる). 000100001010 つまり右のように A~Dを〇境を仕切りで表せば,9個の○と3個のの並びと対応する. (1)は,仕切りが両端にはなく,かつ隣り合わない。 (2) は並び順は自由である.このような○と の並べ方の総数を求める. 解答圜 (1) ○を9個並べておき,○の間 (図の1)8か所 から異なる3か所を選んで仕切りを入れる. 仕切り で区切られた 4か所の○の個数を左から順に A, B, C,D の個数とすると,どの場所にも○は1個以上あ るので題意の買い方と対応する. よって, 求める場合 AAABBBBCD ↑↑↑ |0|000 A B C D 8・7・6 3.2 =56(通り) の数は仕切りの位置の選び方と同じで, 8C3= (2) ○を9個, を3個, 横一列に自由に並べ、 個数 (○がないところは0個) を左から順に A, B, C, D の個数とする. この並べ方と題意の買い方は 対応するから,求める場合の数は, 9+3C3= 9+3つ で区切られた4か所の○の 000||000000 A B C D 12-11-10 =220 (通り) 3・2 ■(2)で,各缶詰を1個ずつ余分に買うとすると, 合わせて13個, 各1個以上な ので (1) と同様にできる (式も 12C3となる). 逆に (1) を各缶詰を1個ずつ減ら して(2)のように解いてもよい。 □Aをx個, Bをy個, Cを2個, Dをw個買うとすると, x+y+z+w=9で, (1)はxwが1以上, (2) は x~w が0以上である. このような~w の組の 個数を求めたことになる. p.25のミニ講座も参照. 買い方を決めれば仕切りの位置 が決まる。仕切りの位置が違え ば違う買い方と対応する。 07 演習題(解答は p.21) 2008 は,各位の数字の和が10になる4桁の自然数である。 (実際に2008 の各位の数字 の和は2+0+0+8=10である.) このように, 各位の数字の和が10になる4桁の自然数 は全部で 個ある. x+y+z+w=10だが

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(1)は解けました😊 (2)と(3)が難しいです、、。 (2)とかは全て正しく読み込めたと仮定する〜から始めたらなんとかいけそうな気するんですけど、そこから手が進まないです、、

12 雑誌を含めて, 全ての書籍に付与されている固有の番号, ISBN (International Standard Book Num- ber) の秘密について考える. 例: ISBN 4910054230772 末尾の「2」は,「チェックディジット」 とよばれるもので, その前の12個の数字列 491005423077が 正しく入力されたかどうか(例えば, バーコードが正しく読み取れたかどうか) を確認するものである. ここで, チェックディジット 「2」は,「491005423077」 から次の規則により定まっている. 1. 先頭位の数字から順番に, 1,3を掛けていく: 4 9 1 005 4 2 3 0 7 7 x1 x3 x1 x3 x1 x3 x1 x3 x1 x3 x1 x3 4 27 1 0 0 15 4 630 7 21 2. 得られた数を加えて, 10で割った余りを求める(法10で評価する): 4+27 + 1 + 15 +4+6+3+7+21 = 4 +7+1+5+4+6+3+7+1=8 (mod 10) 3. 得られた数 「8」 を10から引いて, チェックディジット 「2」を得る. 10-8=2. 但し, 2. で得られた数が0の場合は, チェックディジットを0 とする. (1) あなたの手元にある本の ISBN について, チェックディジットを確認せよ. (2) 本の汚れなどの理由で, バーコード読み取り機が,ある1つの数字を読み違えたとする. この間違 いのままチェックディジットを計算すると, その値は、真の値とは異なることを一般的に論ぜよ. (3) バーコード読み取り機が,隣り合う場所にある数字1組についてそれら2つ値を入れ替えて読み 取ってしまった. この場合は間違いの検知率は100% ではない. その理由を一般的に論ぜよ.

解決済み 回答数: 2
数学 大学生・専門学校生・社会人

大学数学です。 本当に分かりません。 参考の教科書やヒントなどなく、困っています、。 回答の流れなど詳しく書いて写真などで送ってくださるとすごく助かります😭🙇🏻‍♀️ よろしくお願いします、💦

中等教科教育法数学 ⅡI 第2設題 1 3地点 P, Q, R があり,PからQを通る Rまでの道のりは7200 [m] で, P から Q までの道のりと Q からRまでの道のりは等しい. A, B,Cの3人が、 次のようにしてPからQまで手紙を配達した: 2 ・Aは10時にPを毎分 75 [m] の速さでQに向かって出発し, B に出会い, 手紙を渡してすぐに 向きを変えて来た道を同じ速さでPに戻った. ・BはAより何分か遅れてQを毎分90 [m] の速さで P に向かって出発し, A に出会い, 手紙を 渡してすぐに向きを変えて来た道を同じ速さでRに向かった. そして, 出発点Qを通過した後 Cに出会い, 手紙を渡してすぐに向きを変えて来た道を同じ速さでQに戻った. ・CはBより何分か遅れて R を毎分125[m] の速さで Q に向かって出発し, B に出会い, 手紙を 受取りすぐに向きを変えて来た道を同じ速さで R に戻り, 手紙は R に届いた. 4 3人が手紙の受け渡しを終えてそれぞれの出発点に戻るまでに, AとBの歩いた時間は等しく, A と Cの歩いた道のりは等しかったという. (1) 手紙が R に届いた時刻を求めよ. (2) B が Q を出発した時刻, C が R を出発した時刻をそれぞれ求めよ. 次のメモを持ってあなたは宝島を目指した: 1 5 5 5 5 5 5 5 55 島の中央に桃栗 柿の木が立っている野原がある. 桃の木から栗の木に向かって歩数を数えて歩く. 栗の木に着いたら右へ90° 向きを変 えてさらに同じ歩数を歩き, そこに杭を立てる. 桃の木から柿の木に向かって歩数を数えて歩く. 柿の木に着いたら左へ90° 向きを変 えてさらに同じ歩数を歩き, そこに杭を立てる. ・2つの杭のちょうど真ん中の位置に宝が埋まっている. . 宝島に渡り目的の野原に着いたあなたは愕然とした. 桃の木だけが枯れてしまったようで跡形もなく なっていた. あなたは宝を掘り当てることができるかを論ぜよ. 3 紙を筒状に丸めて半径r, 高さんの直円筒をつくる。 図のように, 直円筒の高さ方向に平行で, 円筒の中心を通る長方形 ABCD を考 える. この長方形の頂点 B, D を通り、この長方形に垂直な平面 P で直円筒を切る. B (1) 平面 P 上の, 切り口で囲まれた部分の面積を求めよ. (2) 直円筒を切ってできた2つの部分をそれぞれ広げて平面とし たとき, この平面上で切り口はどのような曲線になっているか論 ぜよ. 長さ1の正方格子を考える. 格子点上に頂点にもつ正5角形は存在しないことを示せ . A 5 4桁の自然数nについて, n3 の値の下4桁が となるものを全て求めよ. 6 縁が楕円の形をしたビリヤード台を考える. この楕円の1つの焦点から玉を突くと、 緑に当たり跳ね 返った玉はもう一方の焦点を通過する. これを示せ .

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

中等教育教科法数学②です! 難しいです、。。 ①もあって、、教えてもらえると嬉しいです、。 よろしくお願いします🙇🏻‍♀️💦

中等教科教育法数学 ⅡI 第2設題 |1| 3 地点 P, Q, R があり,PからQを通る Rまでの道のりは 7200 [m] で, P から Q までの道のりと Q からRまでの道のりは等しい. A,B,Cの3人が、 次のようにしてPからQまで手紙を配達した : 2 • A は10時にPを毎分 75 [m] の速さでQに向かって出発し, B に出会い, 手紙を渡してすぐに 向きを変えて来た道を同じ速さでPに戻った. 15 ・BはAより何分か遅れてQを毎分90 [m] の速さでPに向かって出発し, A に出会い, 手紙を 渡してすぐに向きを変えて来た道を同じ速さでRに向かった. そして,出発点 Q を通過した後 Cに出会い, 手紙を渡してすぐに向きを変えて来た道を同じ速さでQに戻った. ・CはBより何分か遅れて R を毎分125 [m] の速さでQに向かって出発し, B に出会い, 手紙を 受取りすぐに向きを変えて来た道を同じ速さでRに戻り, 手紙は R に届いた. 3人が手紙の受け渡しを終えてそれぞれの出発点に戻るまでに, AとBの歩いた時間は等しく, A と Cの歩いた道のりは等しかったという. (1) 手紙が R に届いた時刻を求めよ. (2) B が Q を出発した時刻, C が R を出発した時刻をそれぞれ求めよ. 次のメモを持ってあなたは宝島を目指した: 1 5 5 5 5 5 5 5 5 5 5 島の中央に桃栗, 柿の木が立っている野原がある. . 桃の木から栗の木に向かって歩数を数えて歩く. 栗の木に着いたら右へ90° 向きを変 えてさらに同じ歩数を歩き, そこに杭を立てる. 桃の木から柿の木に向かって歩数を数えて歩く. 柿の木に着いたら左へ90° 向きを変 えてさらに同じ歩数を歩き, そこに杭を立てる . ・ 2つの杭のちょうど真ん中の位置に宝が埋まっている. 宝島に渡り目的の野原に着いたあなたは愕然とした. 桃の木だけが枯れてしまったようで跡形もなく なっていた. あなたは宝を掘り当てることができるかを論ぜよ. 紙を筒状に丸めて半径r高さんの直円筒をつくる. 図のように, 直円筒の高さ方向に平行で, 円筒の中心を通る長方形 ABCD を考 える. この長方形の頂点 B, D を通り, この長方形に垂直な平面 P で直円筒を切る. (1) 平面 P 上の, 切り口で囲まれた部分の面積を求めよ. (2) 直円筒を切ってできた2つの部分をそれぞれ広げて平面とし たとき, この平面上で切り口はどのような曲線になっているか論 ぜよ. 4 長さ1の正方格子を考える. 格子点上に頂点にもつ正5角形は存在しないことを示せ . 4桁の自然数nについて, n3 の値の下4桁がnとなるものを全て求めよ. B CA D 6 縁が楕円の形をしたビリヤード台を考える. この楕円の1つの焦点から玉を突くと, 縁に当たり跳ね 返った玉はもう一方の焦点を通過する. これを示せ .

未解決 回答数: 1
1/2