学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(1)から分かりません。なぜこのようなグラフになるんでしょうか?

123 3章 8 関数とグラフ つけ。 かけ。 重要 例題 立つ。これを場合分けに利用 幅1の範囲で区切り ≦2x<2,2x=2で場合分け、 1≦x<2, x=2で場合分け、 =-2 -2-101 きy=-2 (2) y=-1 71 定義域によって式が異なる関数 関数f(x) (0≦x≦4) を右のように定義すると 次の関数のグラフをかけ。 (1) y=f(x) 指針 (2)y=f(f(x)) 2x (0≦x<2) f(x)= 8-2x (2≤x≤4) 定義域によって式が変わる関数では, 変わる 境目のxyの値に着目。 (2)f(f(x)) f(x)のxにf(x)を代入した式で、 f(x) <2のとき2f(x) f(x)のとき 8-2f(x) (1)のグラフにおいて,0≦f(x) <2となるxの範囲と, 2≦f(x)≦4 となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 (2f(x) (0≦f(x)<2) (2) f(f(x))= 18-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき 1≦x<2のとき 2≦x≦3のとき f(f(x))=2f(x)=2.2x=4x f(f(x))=8-2f(x)=8-2.2x =8-4x f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4のとき f(f(x))=2f(x)=2(8-2x) 変域ごとにグラフをかく。 < (1) のグラフから,f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, f(x) の式は y=0 1≦x<2なら =16-4x f(x)=2x y=1 よって, グラフは図(2) のようになる。 y=2 (1) (2) y ya =x+1 -1 2 A M O 1 2 3 4 x 0 1 2 3 4 x 2≦x≦3なら f(x)=8-2x のように, 2を境にして 式が異なるため, (2) は左 の解答のような合計4 通 りの場合分けが必要に なってくる。 -2=0 an x= ntpと表されるとき、 とき, 01より xの整数部分を表す記号であ 参考 (2) のグラフは,式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 [右の図で、黒の太線・細線部分が y=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 とする。 8から2倍を 引く 4 2 0 4 x 2倍する 練習 関数f(x) (0≦x<1) を右のように定義するとき, ◎ 71 次の関数のグラフをかけ。 2x (0 ≤ x < 1/1) f(x)= (1) y=f(x) 2x-1 (2) y=f(x)) 11/1/1≦x<1)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

投影図の問題です。図4の重なる辺を調べて面を移動している所が、何をしているのか全く分かりません。ここをもう少し分かりやすく示して頂くことはできるでしょうか…?

5. 3. 1. A Challenge 立方体の展開図の問題 図Iのような一つの面で接している正六面体A, Bがある。 A,Bには模様 から見た図である。 また、 AとBの接する面の模様は一致しており、底面には があり、図Ⅱは、 ①の矢印の方向から見た図であり、図Ⅲは、②の矢印の方向 模様がない。このとき、A,Bの展開図の組合せとして最も妥当なのはどれか。 (1) A A 図 I A H B A Firmy B B 図 Ⅱ B B 2. 4. A A B 図Ⅱ 国家総合職 2016 A B AとBの接している面以外の10面を、図1のよ うに、ア~コとします。 ウとクは底面ですから、 模 様が描かれていませんね。 図 1 オ ア 図2 イ A ↑ エ キ A 力 B 1 ク ア コー イ ケ B Aのほうだけちょっと 色を付けとくね! さらに、図1の10面について、 AとBそれぞれの展開図を描くと、 図2の ようになります。 たしかに 力 ア B 1 ク キ ク I A t " これより、 まずAについて、アとウは向かい合う面ですが、肢2,3は、 図3のように、向かい合う面の位置関係 (基本事項①) になっていませんので、 ここで消去できます。 また、肢5については、エに描かれた線の向きが図2と異なることが、 アの 線とのつながりからわかり、同様に消去できます。 こうじゃないと いけないんだよね多分

回答募集中 回答数: 0
1/8