学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(2)どう計算してるんですか? 書いて欲しいです、、

次の等式を示せ。 (1) 1-tanh2x=- 1 cosh2x (2) sinh(x+y)=sinhx cosh y±coshx sinhy- 当 (3) cosh(x±y)=coshx coshy±sinhxsinhy 指針 双曲線関数の定義式 sinhx=- e-e-* 2 cosh.x=_extex tanhx=- e*-e-* (1) 関数 また、 Blim xa 2 e*+e** と、等式 coshx-sinhx=1 を利用して式変形を行う。 等式 A=B の証明の方法は,次のいずれかによる。 (2) x- これ [1] AかBの一方を変形して,他方を導く (複雑な方の式を変形)。 [2] A, B をそれぞれ変形して,同じ式を導く。 [A=C, B=C⇒A=B] [3] A-B=0 であることを示す。 [A=B⇔A-B=0] ここでは, [1] の方法で証明する。 (3) 任 あ とな x= り立 ex-e-x 解答 (1) tanhx= であるから extex 1-tanhx=1-(ex-e_x)= (e2x+e-2x+2)-(e2x+e-x-2) daia そこ ま (exte-x)2 dale deob ad (ex + e¯x)² = (ex + ex )² 2 cosh2x 2 ex-e-x (2) sinhx= coshx= 2 exte-x 2 ey-e-y ete- がはこ sinhy=- 2 coshy=2 であるから sinhx coshy ±coshx sinhy= ex-exte-y exte e-e -y ・土・ (4) ネ 2 2 4 lexty_ -e-(x±y) 2 ex-ex (3) sinhx=- (ex+x+ex-x-e-x+y—e¯¯³) ± (ex+y—ex−y + e −x+y-e¯x-y) sin(x±y) (複号同順) 2, coshx= t=e exte-x 2, sinhy= であるから cosh x coshy±sinhx sinh y=- exte¯* e³te¯ e-ex e-e- 2 2 ・土・ (ex+x+ex-y+e¯x+y+e¯*¯³) ± (e*+y—ex-y-e-x+x+e-x-3) 4 2 exty te - (x+y) 2,coshy= 2 ま (6)x で COS 更 ま sete

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

高校数学のことで質問です🙋 赤線で囲んだ中で垂直な直線を求めていると思いますが、その過程でどのような考え方を用いて導かれたのかが分かりません。 よろしくお願いします🙇

標を媒介変数 また,点Pは第1象限の点であるから,媒介変数の値の範囲に注意して 積Sのとりうる値の範囲を考える。 の式に代入す 解答 条件から,P(acoso, bsine) (0<< )と表される。 π 点Pにおける接線の方程式は acos o bsin x+ a² -y=1 62 すなわち (bcosθ)x+(asin0)y=ab ①1) と表される。(*) これが点Pを通るとき ①に垂直な直線は, (asin0)x- (bcos0)y=c (cは定数) casino・acoso-bcose・bsino =(a2-b2)sinOcos O よって, 点P における法線の方程式は 5/ bsine 0 R (*) 2直線が FAOqx-py+r= 直である。 なお,点(x 直線 px+g_ 直線の方 9-I + (asino)x-(bcose)y=(a-b2)sin Acose ②において,y=0, x=0 とそれぞれおくことにより (Sa²-b² 2-62 x= より ゆえに ゆえに a2-62 -cos 0, y=- -sinė a b Q(a-be cose, 0), R(0, db sino) Q(22-62 a ここで, 0<b<a, sin>0, cos0 >0より, b -sin0 < 0 であるから ...... ② [9(x-x1) このことを いてもよい。 ◄62<a² a²-b² a²-6² cos 0>0, - a b S= =1/2OQOR= (A2-62)2 1 a²-b2 a²- cos 0.. sino 2 a b OR-b (a2-62)2 Gaian-00-A8-A0=80= = -sino coso= -sin20 sin Acoso 2ab 4ab 0<<1より、0<20<πであるから π 0<sin 20≦1 20=す ときSは最 2 (a²-b²)² したがって 0<S≤ 4ab 練習 実数x, y が 2x2+3y=1 を満たすとき, x2 -y'+xyの最大値と最-

解決済み 回答数: 1
1/18